วันอาทิตย์ที่ 26 กรกฎาคม พ.ศ. 2558

โทรคมนาคม


โทรคมนาคม (Telecommunication) หมายถึงการสื่อสารระยะไกล โดยใช้เทคโนโลยีต่างๆ โดยเฉพาะอย่างยิ่งผ่านทางสัญญาณไฟฟ้า หรือคลื่นแม่เหล็กไฟฟ้า เนื่องจากเทคโนโลยีที่แตกต่างกันจำนวนมากที่เกี่ยวข้องกับคำนี้ จึงมักใช้ในรูปพหูพจน์ เช่น Telecommunications
เทคโนโลยีการสื่อสารโทรคมนาคมในช่วงต้นประกอบด้วยสัญญาณภาพ เช่น ไฟสัญญาณ, สัญญาณควัน, โทรเลข, สัญญาณธงและ เครื่องส่งสัญญาณด้วยกระจกสะท้อนแสงจากดวงอาทิตย์ตัวอย่างอื่นๆของการสื่อสารโทรคมนาคมก่อนช่วงที่ทันสมัยได่แก่ข้อความเสียงเช่นกลอง, แตรและนกหวีด เทคโนโลยีการสื่อสารโทรคมนาคมด้วยไฟฟ้าและแม่เหล็กไฟฟ้าได้แก่โทรเลข, โทรศัพท์และ โทรพิมพ์, เครือข่าย, วิทยุ, เครื่องส่งไมโครเวฟ, ใยแก้วนำแสง, ดาวเทียมสื่อสารและอินเทอร์เน็ต
การปฏิวัติ ในการสื่อสารโทรคมนาคมไร้สายเริ่มต้นขึ้นในปี 190X กับการเป็นผู้บุกเบิกพัฒนาใน การสื่อสารทางวิทยุโดย Guglielmo มาร์โคนี ที่ได้รับรางวัลโนเบลในสาขาฟิสิกส์ในปี 1909 สำหรับความพยายามของเขา นักประดิษฐ์ผู้บุกเบิกและนักพัฒนาอื่นๆที่น่าทึ่งมากๆในด้านการ สื่อสารโทรคมนาคมไฟฟ้าและอิเล็กทรอนิกส์รวมถึง ชาร์ลส์ วีทสโตน และ ซามูเอล มอร์ส (โทรเลข) , Alexander Graham Bell (โทรศัพท์), เอ็ดวิน อาร์มสตรอง และลี เดอ ฟอเรสท์ (วิทยุ) เช่นเดียวกับที่ จอห์น โลจี แบร์ด และ Philo Farnsworth (โทรทัศน์)
กำลังการผลิตที่มีประสิทธิภาพของโลกในการแลกเปลี่ยนข้อมูลผ่านทางเครือข่ายการสื่อสารโทรคมนาคมสองทางเพิ่มขึ้นจาก 281 เพตาไบต์ของข้อมูล (ที่ถูกบีบอัดอย่างดีที่สุด) ในปี 1986 เป็น 471 petabytes ในปี 1993 และ 2.2 (บีบอัดอย่างดีที่สุด ) เอ็กซาไบต์ ในปี 2000 และ 65 (บีบอัดอย่างดีที่สุด) exabytes ในปี 2007 นี่คือเทียบเท่าข้อมูลของสองหน้า หนังสือพิมพ์ต่อคนต่อวันในปี 1986 และ หกเต็มหน้าหนังสือพิมพ์ต่อคนต่อวันในปี 2007 ด้วยการเจริญเติบโตขนาดนี้, การสื่อสารโทรคมนาคมมีบทบาทสำคัญมากขึ้นในเศรษฐกิจโลกและอุตสาหกรรมโทรคมนาคมทั่วโลกประมาณ$ 4.7 ล้านล้านภาคเศรษฐกิจในปี 2012  รายได้จากการให้บริการของอุตสาหกรรมโทรคมนาคมทั่วโลกถูกประเมินไว้ที่ $1.5 ล้านล้านในปี 2010 สอดคล้องกับ 2.4% ของผลิตภัณฑ์มวลรวมของโลก (GDP)

องค์ประกอบและหน้าที่ของระบบโทรคมนาคม
  ระบบโทรคมนาคม (Telecommunications Systems) คือระบบที่ประกอบด้วยฮาร์ดแวร์และซอฟท์แวร์จำนวนหนึ่งที่สามารถทำงานร่วมกันและถูกจัดไว้สำหรับการสื่อสารข้อมูลจากสถานที่แห่งหนึ่งไปยังสถานที่อีกแห่งหนึ่ง    ซึ่งสามารถถ่ายทอดข้อความ  ภาพกราฟฟิก เสียงสนทนา และวิดีทัศน์ได้   มีรายละเอียดของโครงสร้างส่วนประกอบดังนี้
            1. เครื่องคอมพิวเตอร์หรือเครื่องมือเปลี่ยนปริมาณใดให้เป็นไฟฟ้า (Transducer) เช่น โทรศัพท์ หรือไมโครโฟน
            2. เครื่องเทอร์มินอลสำหรับการรับข้อมูลหรือแสดงผลข้อมูล  เช่น เครื่องคอมพิวเตอร์หรือโทรศัพท์
            3. อุปกรณ์ประมวลผลการสื่อสาร (Transmitter) ทำหน้าที่แปรรูปสัญญาณไฟฟ้าให้เหมาะสมกับช่องสัญญาณ เช่น โมเด็ม (MODEM) มัลติเพล็กเซอร์ (multiplexer) แอมพลิไฟเออร์ (Amplifier) ดำเนินการได้ทั้งรับและส่งข้อมูล
            4. ช่องทางสื่อสาร (Transmission Channel) หมายถึงการเชื่อมต่อรูปแบบใดๆ เช่น สายโทรศัพท์  ใยแก้วนำแสง สายโคแอกเซียล  หรือแม้แต่การสื่อสารแบบไร้สาย
            5. ซอฟท์แวร์การสื่อสารซึ่งทำหน้าที่ควบคุมกิจกรรมการรับส่งข้อมูลและอำนวยความสะดวกในการสื่อสาร

หน้าที่ของระบบโทรคมนาคม
        ทำหน้าที่ในการส่งและรับข้อมูลระหว่างจุดสองจุด  ได้แก่ ผู้ส่งข่าวสาร (Sender) และ ผู้รับข่าวสาร (Receiver) จะดำเนินการจัดการลำเลียงข้อมูลผ่านเส้นทางที่มีประสิทธิภาพที่สุด     จัดการตรวจสอบความถูกต้องของข้อมูลที่จะส่งและรับเข้ามา สามารถปรับเปลี่ยนรูปแบบข้อมูลให้ทั้งสองฝ่ายสามารถเข้าใจได้ตรงกัน  ซึ่งที่กล่าวมานี้ส่วนใหญ่ใช้คอมพิวเตอร์เป็นตัวจัดการ ในระบบโทรคมนาคมส่วนใหญ่ใช้อุปกรณ์ในการรับส่งข้อมูลข่าวสารต่างชนิด ต่างยี่ห้อกัน  แต่สามารถแลกเปลี่ยนข้อมูลระหว่างกันได้เพราะใช้ชุดคำสั่งมาตรฐานชุดเดียวกัน กฎเกณฑ์มาตรฐานในการสื่อสารนี้เราเรียกว่า  “โปรโตคอล (Protocol)”  อุปกรณ์แต่ละชนิดในเครือข่ายเดียวกันต้องใช้โปรโตคอลอย่างเดียวกัน จึงจะสามารถสื่อสารถึงกันและกันได้  หน้าที่พื้นฐานของโปรโตคอล คือ   การทำความรู้จักกับอุปกรณ์ตัวอื่นที่อยู่ในเส้นทางการถ่ายทอดข้อมูล  การตกลงเงื่อนไขในการรับส่งข้อมูล  การตรวจสอบความถูกต้องของข้อมูล การแก้ไขปัญหาข้อมูลที่เกิดการผิดพลาดในขณะที่ส่งออกไปและการแก้ปัญหาการสื่อสารขัดข้องที่อาจเกิดขึ้นโปรโตคอลที่รู้จักกันมาก ได้แก่ โปรโตคอลในระบบเครือข่ายอินเตอร์เนต เช่น  Internet Protocal ; TCP/IP , IP  Address ที่เราใช้กันอยู่ทุกวันนี้

           ประเภทของสัญญาณ

- สัญญาณแอนะล็อก(analog signal) หมายถึงสัญญาณข้อมูลแบบต่อเนื่อง (Continuouse Data) มีขนาดของสัญญาณไม่คงที่ การเปลี่ยนแปลงขนาดของสัญญาณแบบค่อยเป็นค่อยไป มีลักษณะเป็นเส้นโค้งต่อเนื่องกันไป โดยการส่งสัญญาณแบบอนาล็อกจะถูกรบกวนให้มีการแปลความหมายผิดพลาดได้ง่าย เช่น สัญญาณเสียงในสายโทรศัพท์ เป็นต้น
- สัญญาณดิจิทัล(digital signal) หมายถึง สัญญาณที่เกี่ยวข้องกับข้อมูลแบบไม่ต่อเนื่อง(Discrete Data) ที่มีขนาดแน่นอนซึ่งขนาดดังกล่าวอาจกระโดดไปมาระหว่างค่าสองค่า คือ สัญญาณระดับสูงสุดและสัญญาณระดับต่ำสุด ซึ่งสัญญาณดิจิตอลนี้เป็นสัญญาณที่คอมพิวเตอร์ใช้ในการทำงานและติดต่อสื่อสารกัน

อนาล็อก กับ ดิจิตอล ต่างกันอย่างไร? อนาล็อก กับ ดิจิตอล มีความแตกต่างกันทางความต่อเนื่องของสัญญาณ และความแม่นยำของสัญญาณ



ตัวกลางหรือช่องทางการสื่อสาร

- ช่องสื่อสาร(communication channels) หมายถึง รูปแบบใดๆ ที่สามารถนำมาใช้ในการถ่ายทอดสัญญาณข้อมูลจากอุปกรณ์ตัวหนึ่งในระบบเครือข่ายไปยังอุปกรณ์อีกตัวหนึ่ง

- สื่อต่างๆ ที่ใช้ได้แก่ สายคู่บิดเกลียว สายโคแอ็กเซียล สายใยแก้วนำแสง สัญญาณไมโครเวฟ สัญญาณผ่านดาวเทียม และสัญญาณไร้สายแบบต่างๆ
  สื่อกลางประเภทใช้สาย
       1.สายคู่บิดเกลียว เมื่อก่อนเป็นสายสัญญาณที่ใช้ในระบบโทรศัพท์ แต่ปัจจุบันได้กลายเป็นมาตรฐานสายสัญญาณที่เชื่อมต่อในเครือข่ายท้องถิ่น (LAN) สายคู่บิดเกลียวหนึ่งคู่ประกอบด้วยสายทองแดงขนาดเล็ก เส้นผ่านศูนย์กลางประมาณ 0.016-0.035 นิ้ว หุ้มด้วยฉนวนแล้วบิดเป็นเกลียวเป็นคู่ การบิดเป็นเกลียวของสายแต่ละคู่มีจุดประสงค์เพื่อช่วยลดคลื่นแม่เหล็กไฟฟ้าที่รบกวนซึ่งกันและกัน
         สายคู่เกลียวบิดที่มีขายในท้องตลาดมีหลายประเภทด้วยกัน ซึ่งสายสัญญาณอาจประกอบด้วยสายคู่บิดเกลียวตั้งแต่หนึ่งคู่ไปจนถึง 600 คู่ในสายขนาดใหญ สายคู่บิดเกลียวที่ใช้กับเครือข่าย LAN จะประกอบด้วย 4 คู่ สายคู่บิดเกลียวที่ใช้ในเครือข่ายแบ่งออกได้เป็น 2 ประเภทคือ
        - STP (Shielded Twisted Pairs) หรือสายคู่บิดเกลียวหุ้มฉนวน
        - UTP (Unshielded Twisted Pairs) หรือสายคู่บิดเกลียวไม่หุ้มฉนวน
Shielded Twisted Pairs (STP)
         สายคู่บิดเกลียวแบบมีส่วนป้องกันสัญญาณรบกวน หรือ STP (Shielded Twisted Pairs) มีส่วนที่เพิ่มขึ้นมาคือ ส่วนที่ป้องกันสัญญาณรบกวนจากภายนอก ซึ่งชั้นป้องกันนี้อาจเป็นแผ่นโลหะบาง ๆ หรือใยโลหะที่ถักเปียเป็นตาข่าย ซึ่งชี้นป้องกันนี้จะห่อหุ้มสายคู่บิดเกลียวทั้งหมด ซึ่งจุดประสงค์ของการเพิ่มขั้นห่อหุ้มนี้เพื่อป้องกันการรบกวนจากคลื่นแม่เหล็กไฟฟ้า เช่น คลื่นวิทยุจากแหล่งต่างๆ
Unshielded Twisted Pairs (UTP)
สายคู่บิดเกลียวแบบไม่มีส่วนป้องกันสัญญารรบกวนหรือ UTP (Unshielded Twisted Pairs) เป็นสายสัญญาณที่นิยมเรียกสั้น ๆ ว่าสาย UTP เป็นสายสัญญาณที่นิยมใช้กันมากที่สุดในระบบเครือข่ายคอมพิวเตอร์ปัจจุบัน ซึ่งการใช้สายนี้ความยาวต้องไมเกิน 100 เมตร
      2.สายโคแอ็กเซียล ป็นสายสัญญาณที่ใช้เป็นสื่อกลางการเดินทางของข้อมูลในระบบเครือข่ายคอมพิวเตอร์(computer network) เป็นสายสัญญาณประเภทแรกที่ใช้และเป็นที่นิยมมากในระบบเครือข่ายคอมพิวเตอร์สมัยแรกๆ แต่ในปัจจุบันเครือข่ายส่วนใหญ่จะใช้สายสัญญาณอีกประเภทหนึ่ง คือ สายคู่เกลียวบิดและสายใยแก้วนำแสง ส่วนสายโคแอ็กซ์เชียลถือว่าเป็นสายที่ล้าสมัยสำหรับเครือข่ายคอมพิวเตอร์ในปัจจุบัน อย่างไรก็ตามยังมีระบบเครือข่ายบางประเภทที่ใช้สายแบบนี้อยู่
       สายโคแอ็กซ์เชียลมักถูกเรียกสั้นๆว่า สายโคแอ็กซ์(coax) มีตัวนำไฟฟ้าอยู่สองส่วน คำว่า โคแอ็กซ์ คือ มีแกนร่วมกัน นั่นหมายความว่า ตัวนำไฟฟ้าทั้งสองตัวมีแกนร่วมกันนั่นเอง โครงสร้างของสายโคแอ็กซ์ประกอบไปด้วย สายทองแดงป็นแกนกลาง ห่อหุ้มด้วยวัสดุที่เป็นฉนวน ชั้นต่อมาจะเป็นตัวนำไฟฟ้าอีกชั้นหนึ่ง เป็นแผ่นโลหะบางหรืออาจเป็นใยโลหะที่ถักเป็นเปียหุ้มอีกชั้นหนึ่ง ชั้นสุดท้ายเป็นฉนวนหุ้มและวัสดุป้องกันสายสัญญาณ
       ส่วนที่เป็นแกนของสายทำหน้าที่นำสัญญาณข้อมูล ชั้นใยข่ายจะเป็นชั้นที่ป้องกันสัญญาณรบกวนจากภายนอกและเป็นสายดินไปในตัว ดังนั้น ทั้งสองส่วนนี้จึงไม่ควรเชื่อมต่อกัน เนื่องจากจะทำให้ไฟช็อตได้


      3.สายใยแก้วนำแสง เป็นตัวกลางของสัญญาณแสงชนิดหนึ่ง ที่ทำมาจากแก้วซึ่งมีความบริสุทธิ์สูงมาก เส้นใยแก้วนำแสงมีลักษณะเป็นเส้นยาวขนาดเล็ก มีขนาดประมาณเส้นผมของมนุษย์เรา เส้นใยแก้วนำแสงที่ดีต้องสามารถนำสัญญาณแสงจากจุดหนึ่งไปยังอีกจุดหนึ่งได้ โดยมีการสูญเสียของสัญญาณแสงน้อยมาก 
 
เส้นใยแก้วนำแสงสามารถแบ่งตามความสามารถในการนำแสงออกได้เป็น 2 ชนิด คือ เส้นใยแก้วนำแสงชนิดโหมดเดี่ยว (Singlemode Optical Fibers, SM) และชนิดหลายโหมด (Multimode Optical Fibers, MM)                สื่อกลางประเภทไร้สาย (Wireless Media)การสื่อสารข้อมูลแบบไร้สายนี้สามารถส่งข้อมูลได้ทุกทิศทางโดยมีอากาศเป็นตัวกลางในการสื่อสาร
  1.คลื่นวิทยุ (Radio Waveวิธี การสื่อสารประเภทนี้จะใช้การส่งคลื่นไปในอากาศ เพื่อส่งไปยังเครื่องรับวิทยุโดยรวมกับคลื่นเสียงมีความถี่เสียงที่เป็นรูป แบบของคลื่นไฟฟ้า ดังนั้นการส่งวิทยุกระจายเสียงจึงไม่ต้องใช้สายส่งข้อมูล และยังสามารถส่งคลื่นสัญญาณไปได้ระยะไกล ซึ่งจะอยู่ในช่วงความถี่ระหว่าง 104 – 109 เฮิรตซ์ ดังนั้ัน เครื่องรับวิทยุจะต้องปรับช่องความถี่ให้กับ


 2.สัญญาณไมโครเวฟ (Microwave)เป็นสื่อกลางในการสื่อสารที่มีความเร็วสูง ส่งข้อมูลโดยอาศัยสัญญาณไมโครเวฟ ซึ่งเป็นสัญญาณคลื่นแม่เหล็กไฟฟ้าไปในอากาศพร้อมกับข้อมูลที่ต้องการส่ง และจะต้องมีสถานีที่ทำหน้าที่ส่งและรับข้อมูล และเนื่องจากสัญญาณไมโครเวฟจะเดินทางเป็นเส้นตรง ไม่สามารถเลี้ยวหรือโค้งตามขอบโลกที่มีความโค้งได้ จึงต้องมีการตั้งสถานีรับ – ส่งข้อมูลเป็นระยะๆ และส่งข้อมูลต่อกันเป็นทอดๆ ระหว่างสถานีต่อสถานีจนกว่าจะถึงสถานีปลายทาง และแต่ละสถานีจะตั้งอยู่ในที่สูง ซึ่งจะอยู่ในช่วงความถี่ 108 – 1012 เฮิรตซ์

 3.แสงอินฟราเรด (Infrared) 
       คลื่นแม่เหล็กไฟฟ้าที่มีความถี่อยู่ในช่วง 1011 – 1014 เฮิรตซ์ หรือความยาวคลื่น 10-3 – 10-6 เมตร เรียกว่า รังสีอินฟราเรด หรือเรียกอีกอย่างหนึ่งว่า คลื่นความถี่สั้น (Millimeter waves)ซึ่งจะมีย่านความถี่คาบเกี่ยวกับย่านความถี่ของคลื่นไมโครเวฟอยู่บ้าง วัตถุร้อน จะแผ่รังสีอินฟราเรดที่มีความยาวคลื่นสั้นกว่า 10-4 เมตรออกมา ประสาทสัมผัสทางผิวหนังของมนุษย์สามารถรับรังสีอินฟราเรด ลำแสงอินฟราเรดเดินทางเป็นเส้นตรง ไม่สามารถผ่านวัตถุทึบแสง และสามารถสะท้อนแสงในวัสดุผิวเรียบได้เหมือนกับแสงทั่วไปใช้มากในการสื่อสาร ระยะใกล้ 

 4.ดาวเทียม (satellite)

       ได้รับการพัฒนาขึ้นมาเพื่อหลีกเลี่ยงข้อจำกัดของสถานีรับ – ส่งไมโครเวฟบนผิวโลก วัตถุประสงค์ในการสร้างดาวเทียมเพื่อเป็นสถานีรับ – ส่งสัญญาณไมโครเวฟบนอวกาศ และทวนสัญญาณในแนวโคจรของโลก ในการส่งสัญญาณดาวเทียมจะต้องมีสถานีภาคพื้นดินคอยทำหน้าที่รับ และส่งสัญญาณขึ้นไปบนดาวเทียมที่โคจรอยู่สูงจากพื้นโลก 22,300 ไมล์ โดยดาวเทียมเหล่านั้น จะเคลื่อนที่ด้วยความเร็วที่เท่ากับการหมุนของโลก จึงเสมือนกับดาวเทียมนั้นอยู่นิ่งอยู่กับที่ ขณะที่โลกหมุนรอบตัวเอง ทำให้การส่งสัญญาณไมโครเวฟจากสถานีหนึ่งขึ้นไปบนดาวเทียมและการกระจายสัญญาณ จากดาวเทียมลงมายังสถานีตามจุดต่างๆ บนผิวโลกเป็นไปอย่างแม่นยำ ดาวเทียมสามารถโคจรอยู่ได้ โดยอาศัยพลังงานที่ได้มาจากการเปลี่ยน พลังงานแสงอาทิตย์ ด้วย แผงโซลาร์ (solar panel)


 5.บลูทูธ (Bluetooth)

       ระบบสื่อสารของอุปกรณ์อิเล็คโทรนิคแบบสองทาง ด้วยคลื่นวิทยุระยะสั้น (Short-Range Radio Links) โดยปราศจากการใช้สายเคเบิ้ล หรือ สายสัญญาณเชื่อมต่อ และไม่จำเป็นจะต้องใช้การเดินทางแบบเส้นตรงเหมือนกับอินฟราเรด ซึ่งถือว่าเพิ่มความสะดวกมากกว่าการเชื่อมต่อแบบอินฟราเรด ที่ใช้ในการเชื่อมต่อระหว่างโทรศัพท์มือถือ กับอุปกรณ์ ในโทรศัพท์เคลื่อนที่รุ่นก่อนๆ และในการวิจัย ไม่ได้มุ่งเฉพาะการส่งข้อมูลเพียงอย่างเดียว แต่ยังศึกษาถึงการส่งข้อมูลที่เป็นเสียง เพื่อใช้สำหรับ Headset บนโทรศัพท์มือถือด้วยเทคโนโลยี บลูทูธ เป็นเทคโนโลยีสำหรับการเชื่อมต่ออุปกรณ์แบบไร้สายที่น่าจับตามองเป็นอย่าง ยิ่งในปัจจุบัน ทั้งในเรื่องความสะดวกในการใช้งานสำหรับผู้ใช้ทั่วไป และประสิทธิภาพในการทำงาน เนื่องจาก เทคโนโลยี บลูทูธ มีราคาถูก ใช้พลังงานน้อย และใช้เทคโนโลยี short – range ซึ่งในอนาคต จะถูกนำมาใช้ในการพัฒนา เพื่อนำไปสู่การแทนที่อุปกรณ์ต่างๆ ที่ใช้สาย เคเบิล เช่น Headset สำหรับโทรศัพท์เคลื่อนที่ เป็นต้น ฺิิิ เทคโนโลยีการเชื่อมโยงหรือการสื่อสารแบบใหม่ที่ถูกคิดค้นขึ้น เป็นเทคโนโลยีของอินเตอร์เฟซทางคลื่นวิทยุ ตั้งอยู่บนพื้นฐานของการสื่อสารระยะใกล้ที่ปลอดภัยผ่านช่องสัญญาณความถี่ 2.4 Ghz โดยที่ถูกพัฒนาขึ้นเพื่อลดข้อจำกัดของการใช้สายเคเบิลในการเชื่อมโยงโดยมี ความเร็วในการเชื่อมโยงสูงสุดที่ 1 mbp ระยะครอบคลุม 10 เมตร เทคโนโลยีการส่งคลื่นวิทยุของบลูทูธจะใช้การกระโดดเปลี่ยนความถี่ (Frequency hop) เพราะว่าเทคโนโลยีนี้เหมาะที่จะใช้กับการส่งคลื่นวิทยุที่มีกำลังส่งต่ำและ ราคาถูก โดยจะแบ่งออกเป็นหลายช่องความถึ่ขนาดเล็ก ในระหว่างที่มีการเปลี่ยนช่องความถึ่ที่ไม่แน่นอนทำให้สามารถหลีกหนีสัญญา นรบกวนที่เข้ามาแทรกแซงได้ ซึ่งอุปกรณ์ที่จะได้รับการยอมรับว่าเป็นเทคโนโลยีบลูทูธ ต้องผ่านการทดสอบจาก Bluetooth SIG (Special Interest Group) เสียก่อนเพื่อยืนยันว่ามันสามารถที่จะทำงานร่วมกับอุปกรณ์บลูทูธตัวอื่นๆ และอินเตอร์เน็ตได้






คลื่นวิทยุที่ส่งมา ทำให้สามารถรับข้อมูลได้อย่างชัดเจนความเร็วในการถ่ายทอดข้อมูล

- ปริมาณข้อมูลที่ส่งผ่านช่องสื่อสารใดๆ มีหน่วยวัดเป็น บิตต่อวินาที(bits per second : bps)

- ช่วงคลื่นสัญญาณที่รวมกันอยู่ในช่องสื่อสารหนึ่งช่อง เรียกว่า ความกว้างของช่องสื่อสาร(bandwidth) ช่วงคลื่นที่กว้างมากหมายถึงช่องสัญญาณที่กว้างมาก สามารถส่งข้อมูลปริมาณมากได้ในเวลาอันรวดเร็ว

- มัลติเพล็กเซอร์เป็นอุปกรณ์ที่ช่วยให้การใช้สื่อหรือช่องสื่อสารขนาดใหญ่มีประสิทธิภาพมากยิ่งขึ้น

Topology  หมายถึง โครงสร้างของเครือข่ายการนำคอมพิวเตอร์มาเชื่อมต่อกันเพื่อประโยชน์ของการสื่อสารรูปแบบการจัดวางคอมพิวเตอร์ การเดินสายสัญญาญคอมพิวเตอร์ในเครือข่าย รวมถึงหลักการไหลเวียนข้อมูลในเครือข่ายสามารถทำได้หลายรูปแบบ 
การเลือกโครงสร้างการเชื่อมต่อเครือข่ายหรือเรียกว่า"โทโปโลยี (Topology)"ลักษณะการใช้งานของเครือข่าย สามารถแบ่งออกเป็น 4 ประเภทคือ
-  ระบบเครือข่ายดาว (Star Topology) มีอุปกรณ์สำหรับเชื่อมต่อเครือข่ายคือ "ฮับ (Hub)" เป็นศูนย์กลางในการเชื่อมต่อเครือข่าย คอมพิวเตอร์แต่ละเครื่องจะเชื่อมต่อสายสัญญาณเข้าไปยังฮับ เป็นแบบการกระจาย ถ้าหากจะส่งข้อมูล ข้อมูลจะต้องผ่านฮับก่อน ฮับจะทำหน้าที่กระจายข้อมูลไปยังเครื่องปลายทาง
      ข้อดีคือ จัดการระบบง่าย , จับหาข้อผิดพลาดง่าย , เครือข่ายคงทนสูง
      ข้อเสียคือ สิ้นเปลืองสัญญาณ , ต้องมีการจำกัดจำนวนคอมพิวเตอร์ที่จะนำมาเชื่อมต่อ.
-  ระบบเครือข่ายบัส (Bus Topology)
     มีการเชื่อมต่อแบบเส้นตรง เชื่อมต่อง่ายและไม่ซับซ้อน โดยจะใช้สายสัญญาณเส้นเดียวในการเชื่อมต่อเครื่องคอมพิวเตอร์ทุกเครื่องในเครือข่าย
     ข้อดีคือ เชื่อมต่อง่าย ไม่ซับซ้อน , ประหยัดสายสัญญาณ , เพิ่มเติมปริมาณเครื่องคอมพิวเตอร์ในเครือข่ายได้ง่าย
     ข้อเสียคือ เนื่องจากเป็นการเชื่อมต่อโดยใช้สัญญาณเดียว เมื่อสายสัญญาณเสียหายจุดใดจุดหนึ่งจะส่งผลให้เครือข่ายจะไม่ทำงานได้ทันที , หาข้อผิดพลาดในการชำรุดได้ยาก



-  ระบบเครือข่ายวงแหวน  (Ring Topology) มีลักษณะของการเชื่อมต่อเป็นรูปวงแหวนหรือวงกลม สัญญาณจะเดินทางเป็นวงกลมในทิศทางเดียว โดยจะใช้ลักษณะ
การส่งต่อข้อมูล เมื่อการส่งข้อมูลเรียบร้อย จะแจ้งไปยังเครื่องอื่นๆ ว่าสายสัญญาณว่าง เพื่อให้เครื่องอื่นทำการส่งข้อมูลต่อไป
      ข้อดีคือ ประหยัดสายสัญญาณ , ทำการติดตั้งในเครือข่ายสามารถทำได้ง่าย , การส่งข้อมูลมีผลเท่าเทียมกัน
      ข้อเสียคือ ถ้าสายสัญญาณช่วงใดช่วงหนึ่งเสียหายจะทำให้ระบบเครือข่ายทั้งหมดไม่สามารถทำงานได้ทันที ,การตรวจสอบเมื่อเกิดความผิดพลาดทำได้ยาก



-  ระบบเครือข่ายแบบเมซ (Mesh Topology) เป็นการเชื่อมต่อเครือข่ายที่สมบูรณ์ คอมพิวเตอร์ทุกเครื่องในเครือข่ายเชื่อมต่อถึงกันได้ทั้งหมดด้วยสัญญาณเป็นอิสระในการส่งข้อมูล ถ้าเส้นทางหลักเกิดความเสียหาย จะลดความผิดพลาดในการส่งข้อมูล ทำให้ระบบนี้มีประสิทธิภาพและมีความเชื่อถือสูง
       ข้อดีคือ ถ้าสายสัญญาณเกิดความเสียหายก็ไม่ส่งผลต่อการส่งข้อมูลเพราะมีเส้นสำรองเพื่อส่งข้อมูล ,
เกิดความรวดเร็วในการส่งข้อมูล เนื่องจากเดินทางได้หลายทาง
       ข้อเสียคือ ทำให้สิ้นเปลืองสายสัญญาณมาก , มีความซับซ้อนในการเชื่อมต่อเครือข่าย.



     นอกจากโครงสร้างทั้ง 4 ประเภทที่ได้กล่าวมาแล้ว ได้นำรูปแบบของโครงสร้างหลายๆ รูปแบบผสมผสานให้เกิดเป็นโครงสร้าง
เครือข่ายขึ้นอีกรูปแบบหนึ่งที่เรียกว่า "ไฮบริดจ์" เป็นการนำโครงสร้างเครือข่ายหลายรูปแบบมารวมกัน



PBX - LAN - WAN

- PBX(Private Branch Exchange) เป็นเครื่องคอมพิวเตอร์ชนิดพิเศษที่ออกแบบมาสำหรับจัดการบริหารการเชื่อมต่อวงจรโทรศัพท์จากสายนอกเข้ากับสายโทรศัพท์ภายในองค์กรอย่างอัตโนมัติ



- ระบบเครือข่ายเฉพาะที่(Local Area Network:LAN)เป็นระบบเครือข่ายบริเวณไม่กว้างมากนัก เชื่อมต่อเครื่องคอมพิวเตอร์ขนาดเล็กและอุปกรณ์ต่อพ่วง และอุปกรณ์สื่อสารเข้าด้วยกันโดยมีช่องทางสื่อสารเป็นของตนเอง มีซอฟต์แวร์เครือข่ายเป็นของตนเองเฉพาะเรียกว่า NOS(Network Operating System) PBX-- LAN--WAN 

- ระบบเครือข่ายบริเวณกว้าง(Wide Area Network:WAN) เป็นระบบที่มีขอบเขตการใช้งานกว้างขวางมาก เช่นการเชื่อมต่อระบบระหว่างสาขาของธนาคาร เป็นต้น



       การสื่อสารแบบแอนะล็อกและแบบดิจิทัล

สัญญาณที่ใช้ในการสื่อสารสามารถเป็นได้ทั้งแอนะล็อกหรือดิจิทัล สำหรับสัญญาณแอนะล็อกสัญญาณจะแปรอย่างต่อเนื่องไปตามข้อมูล ในสัญญาณดิจิทัลข้อมูลจะถูกเข้ารหัสเป็นชุดของค่าที่ไม่ต่อเนื่อง (เช่นชุดของหนึ่งและศูนย์) ในระหว่างที่สัญญาณของข้อมูลถูกส่งออกไปและรับเข้ามา ข้อมูลที่มีอยู่ในสัญญาณแอนะล็อกหลีกเลี่ยงไม่ได้ที่จะถูกลดสภาพลงเนื่องจากการรบกวนทางกายภาพที่ไม่พึงประสงค์ (สัญญาณที่ถูกส่งออกจากเครื่องส่งในทางปฏิบัติจะไม่มีเสียงรบกวน) ปกติแล้วเสียงรบกวนในระบบการสื่อสารสามารถเป็นได้ทั้งเพิ่มเข้าหรือลบออกจากสัญญาณที่พึงประสงค์ในการสุ่มที่สมบูรณ์ รูปแบบของเสียงรบกวนนี้จะเรียกว่าเสียงเติมแต่งด้วยความเข้าใจว่าเสียงรบกวนจะเป็นลบหรือบวกแล้วแต่จังหวะที่แตกต่างกันของเวลา
ในทางตรงกันข้าม ถ้าเสียงรบกวนเติมแต่งมีไม่เกินกว่าเกณฑ์ที่กำหนด ข้อมูลที่มีอยู่ในสัญญาณดิจิทัลจะยังคงเหมือนเดิม ความต้านทานในเสียงรบกวนของระบบดิจิทัล ทำให้เป็นข้อได้เปรียบที่สำคัญของสัญญาณดิจิทัลเหนือกว่าสัญญาณแอนะล็อก.

        เครือข่ายโทรคมนาคม

เครือข่ายการสื่อสารประกอบด้วยเครื่องส่งสัญญาณ, เครื่องรับและช่องทางที่ใช้ส่งข้อความ บางเครือข่ายการสื่อสารมีมากกว่าหนึ่งเราต์เตอร์(route=ทาง, router=ตัวส่ง, ตัวสร้างทาง)ที่ทำงานร่วมกันในการส่งข้อมูลไปยังผู้ใช้ที่ถูกต้อง นอกจากเราเตอร์แล้ว ยังมีสวิตช์ เพื่อใช้ต่อผู้ใช้หลายตัวเข้าด้วยกันด้วย



องค์ประกอบที่สำคัญของเทคโนโลยีโทรคมนาคม ประกอบด้วย 5 องค์ประกอบที่สำคัญ

  • ต้นกำเนิดข่าวสาร (Source of Information)

เป็นส่วนแรกในระบบการสื่อสารโทรคมนาคม เป็นแหล่งที่มาของข่าวสารต่าง ๆ ที่ผู้ส่ง

ต้องการที่จะส่งไปยังผู้รับที่ปลายทาง

ตัวอย่างในระบบโทรศัพท์ หรือระบบวิทยุกระจายเสียง ส่วนนี้ก็คือเสียงพูดของผู้พูดที่

ต้นทาง ซึ่งจะถูกไมโครโฟนเปลี่ยนให้เป็นสัญญาณไฟฟ้าที่เหมาะสม และส่งเข้าไปในระบบ หรือ

ในกรณีระบบการสื่อสารข้อมูล (Data Communication) ส่วนนี้อาจจะเป็นเครื่องคอมพิวเตอร์

หรือ Data Terminal ประเภทต่าง ๆ



Team.jpg


  • เครื่องส่งสัญญาณ (Transmitter)

ทำหน้าที่ในการแปลงหรือเปลี่ยนสัญญาณไฟฟ้าที่ใช้แทนข่าวสารจากต้นกำเนิดข่าวสาร

ให้เป็นสัญญาณหรือคลื่นแม่เหล็กไฟฟ้าที่เหมาะสมในการส่งต่อไปยังปลายทาง

เช่นระบบโทรศัพท์ ตัวเครื่องโทรศัพท์จะแปลงสัญญาณไฟฟ้าที่ใช้แทนเสียงพูด ให้เป็น

สัญญาณแม่เหล็กไฟฟ้าที่เหมาะสมและส่งต่อไปยังปลายทาง

สำหรับในระบบการสื่อสารข้อมูล ส่วนนี้จะเป็น MODEM หรืออุปกรณ์อื่นที่เหมาะสมใน

การเปลี่ยนสัญญาณไฟฟ้าที่มาจากคอมพิวเตอร์เพื่อให้เป็นสัญญาณแม่เหล็กไฟฟ้าที่เหมาะสม

ในการผ่านระบบสื่อสัญญาณไปยังปลายทาง
1_2GHz_2_4GHz_Wireless_AV_Transmitter_and_Receiver.jpg2-4GHz-Wireless-433MHz-IR-Remote-AV-Transmitter_5132811_3.jpg




  • ระบบการส่งผ่านสัญญาณ (Transmission System)

เครื่องส่งได้เปลี่ยน หรือแปลงสัญญาณไฟฟ้าที่ใช้แทนข่าวสารต่าง ๆ ให้เป็นสัญญาณหรือคลื่นแม่เหล็กไฟฟ้าที่เหมาะสม สัญญาณก็จะถูกส่งผ่านระบบระบบการส่งผ่านสัญญาณ เพื่อส่งต่อไปยังเครื่องรับและผู้รับที่ปลายทาง
ดังนั้นระบบการส่งผ่านสัญญาณจึงถือได้ว่านับเป็นส่วนที่สำคัญและจำเป็นมากในระบบการสื่อสารโทรคมนาคม

 

  • เครื่องรับสัญญาณ (Receiver)

เครื่องรับสัญญาณ เป็นส่วนที่ทำการเปลี่ยนสัญญาณ หรือคลื่นแม่เหล็กไฟฟ้า ที่ถูก

ส่งผ่านระบบการส่งผ่านสัญญาณจากต้นทาง เพื่อให้กลับมาเป็นสัญญาณไฟฟ้าที่ใช้แทนข่าวสาร

ที่ถูกส่งมาจากต้นทาง ทั้งนี้เพื่อส่งให้อุปกรณ์ปลายทางทำการแปลง หรือเปลี่ยนสัญญาณไฟฟ้า

นั้น ให้กลับมาเป็นข่าวสารที่ผู้รับสามารถเข้าใจความหมายได้

สำหรับระบบการสื่อสารข้อมูลส่วนนี้จะเป็น MODEM หรืออุปกรณ์ที่เหมาะสมในการ

เปลี่ยนสัญญาณแม่เหล็กไฟฟ้า ให้เป็นสัญญาณไฟฟ้าที่ใช้ข้อมูลในรูปแบบที่ถูกต้อง และ

เหมาะสมสำหรับการส่งต่อให้เครื่องคอมพิวเตอร์ ดังนั้นอุปกรณ์บางชนิด เช่น MODEM อาจ

เป็นได้ทั้งอุปกรณ์ในการส่ง และรับสัญญาณ ในอุปกรณ์ชนิดเดียวกัน

aircard_750[1].jpg


  • ผู้รับสัญญาณ (Destination)

ผู้รับสัญญาณ เป็นส่วนสุดท้ายในระบบการสื่อสารโทรคมนาคม ซึ่งทำหน้าที่รับข้อมูล

ข่าวสารที่ส่งมาจากต้นกำเนิดข่าวสาร

ดังนั้นอุปกรณ์รับสัญญาณ และอุปกรณ์ส่งสัญญาณ อาจเป็นอุปกรณ์ชนิดเดียวกันก็ได้

เช่นคอมพิวเตอร์ เป็นต้น

อุปกรณ์การสื่อสารโทรคมนาคมที่ทันสมัย

โทรศัพท์อัจฉริยะ

โทรศัพท์มือถือมีผลกระทบอย่างมีนัยสำคัญในเครือข่ายโทรศัพท์ สมาชิกโทรศัพท์มือถือในขณะนี้มีจำนวนมากกว่าสมาชิกพื้นฐานอยู่กับที่ในหลายตลาด ยอดขายของโทรศัพท์มือถือในปี 2012 รวม 1,495 ล้านเครื่อง โดยแบ่งเป็นประเทศในแอฟริกา 56 ล้าน, เอเซีย/แปซิฟิก 652 ล้าน, ทวีปอเมริกา 358 ล้าน และยุโรป 366 ล้าน โทรศัพท์เหล่านี้จะได้รับการบริการโดยระบบเสียงที่มีเนื้อหาและมีการส่งแบบดิจิทัล เช่น GSM หรือ W- CDMA ที่มีการตลาดจำนวนมากเลือกที่จะลดลงของระบบอนาล็อก เช่น AMPS

การใช้โทรศัพท์เพื่อการสนทนาเพียงอย่างเดียวผ่านโทรศัพท์พื้นฐานจะจำนวนผู้ใช้ลดลง โดยการใช้สำหรับผู้บริโภคส่วนใหญ่ จะใช้แอปพลิเคชันต่อไปนี้มากขึ้น

  • SMS
  • Voice over IP
  • โทรศัพท์มือถือ 3G, 4G หรือ LTE
  • LINE
  • Tango เป็นแอปพลิเคชันซอฟแวร์ที่ใช้ในการส่งข้อความข้ามแพลตฟอร์มสำหรับสมาร์ทโฟน ที่ให้บริการพูดคุยแบบเห็นภาพผู้ใช้ทั้งสองด้านผ่านทางเครือข่าย 3G, 4G และ Wi-Fi


วิทยุและโทรทัศน์


ในการแพร่ภาพโทรทัศน์ระบบดิจิทัล มีสามมาตรฐานที่ มีแนวโน้มที่จะถูกนำมาใช้ในการแข่งขัน ทั่วโลก ได้แก่มาตรฐาน ATSC , DVB และ ISDB; ทั้งสามมาตรฐาน ใช้ MPEG -2 สำหรับการบีบอัดภาพวิดีโอ, ATSC ใช้ Dolby Digital AC- 3 สำหรับการบีบอัดเสียง, ISDB ใช้ การเข้ารหัสเสียงขั้นสูง ( MPEG-2 ส่วนที่ 7 ) และ DVB ไม่มีมาตรฐานสำหรับการบีบอัดเสียง แต่ทั่วไปมักจะใช้ MPEG - 1 ส่วนที่ 3 Layer 2. ทางเลือกของการมอดูเลชั่นยังแตกต่างกันไปหลายรูปแบบ ในการกระจายเสียงระบบดิจิตอล มาตรฐานเป็นอันหนึ่งอันเดียวกันมาก แทบทุกประเทศเลือกที่จะพัฒนามาตรฐาน Digital Audio Broadcasting (รู้จักกันดีว่าคือมาตรฐาน ยูเรก้า 147) ยกเว้นประเทศสหรัฐอเมริกาที่เลือกที่จะพัฒนาวิทยุ HD ซึ่งแตกต่างจาก ยูเรก้า 147, ที่ขึ้นอยู่กับวิธีการส่งที่เรียกว่าการส่งแบบ in-band on-channel ที่ยอมให้ ข้อมูลดิจิทัล " ขี่หลัง " ไปบนสัญญาณแอนะล็อก AM หรือ FM ปกติ

อย่างไรก็ตาม แม้จะอยู่ในระหว่างเปลี่ยนผ่านไปเป็นดิจิทัล, โทรทัศน์แบบแอนะล็อกยังคงได้รับการถ่ายทอดในประเทศส่วนใหญ่ ข้อยกเว้นคือสหรัฐอเมริกา ที่สิ้นสุดการส่งโทรทัศน์แอนะล็อก (ทั้งหมด แต่ไม่รวมสถานีโทรทัศน์พลังงานต่ำมากๆ) ตั้งแต 12 มิถุนายน 2009 หลังจากที่ต้อง ล่าช้าจากเส้นตายถึงสองครั้ง สำหรับโทรทัศน์แบบแอนะล็อก มีสามมาตรฐานในการการแพร่ภาพโทรทัศน์สี ที่รู้จักกันดีได้แก่ PAL (เยอรมันออกแบบ), NTSC (อเมริกาเหนือออกแบบ) และ SECAM (ฝรั่งเศสออกแบบ) (ไม่เกี่ยวกับมันมาตรฐานทีวี ขาวดำ ซึ่งแตกต่างกันไปในแต่ละประเทศ.) สำหรับวิทยุแอนะล็อก การเปลี่ยนเป็นดิจิทัลทำได้ยากกว่าโดยความจริงที่ว่า เครื่องรับแอนะล็อกจะขายในราคาเศษเสี้ยวของราคาเครื่องรับดิจิตอล. ทางเลือกของการมอดูเลชั่นของวิทยุแอนะล็อกปกติจะเป็นระหว่าง AM หรือ FM เท่านั้น. เพื่อให้บรรลุการเล่นสเตอริโอ subcarrier ของ AM ถูกนำมาใช้สำหรับ FM สเตอริโอ

ปัจจุบัน โทรทัศน์ความละเอียดสูงได้รับความนิยมมากยิ่งขึ้น
        อุตสาหกรรมสื่อออกอากาศถึงจุดเปลี่ยนที่สำคัญในการพัฒนาของตัวมันเอง หลายประเทศกำลังเปลี่ยนการออกอากาศจากแอนะล็อกมาเป็นดิจิทัล ซึ่งทำได้โดยการผลิตวงจรรวมที่ราคาถูกกว่าเดิม ได้ความเร็วและมีความสามารถที่มากขึ้น ข้อได้เปรียบที่สำคัญของการออกอากาศ แบบดิจิตอลก็คือการหลีกเลี่ยงการร้องเรียนเป็นประจำในการออกอากาศแบบแอนะล็อก ซึ่งได้แก่ปัญหาที่ภาพเต็มไปด้วยหิมะ และเงาสะท้อนเหมือนผีและภาพเพี้ยนอื่น ๆ เหล่านี้อันเกิดขึ้นจากการรบกวนในสัญญาณภาพแอนะล็อก การส่งการจายคลื่นด้วยดิจิทัลจะสามารถเอาชนะปัญหานี้ เพราะสัญญาณดิจิทัลจะลดลงเป็นค่าที่ไม่ต่อเนื่องเมื่อเกิดการรบกวน และด้วยเหตุนี้ การเปลี่ยนแปลงของสัญญาณ ขนาดเล็กๆจะไม่ส่งผลกระทบต่อสัญญาณสุดท้าย ตัวอย่างเช่นถ้าข้อความเป็น ไบนารี 1011 ถูกส่งด้วยสัญญาณ แอมพลิจูด [ 1.0 0.0 1.0 1.0 ] และได้รับ สัญญาณที่มี แอมพลิจูด [ 0.9 0.2 1.1 0.9 ] ก็ยังคงถูกถอดรหัสได้ข้อความ ไบนารี 1011 เหมือนกับที่มันถูกส่งมา จากตัวอย่างนี้ ปัญหาที่เกิดกับการส่งสัญญาณแบบดิจิตอลยังสามารถเกิดขึ้นได้ ถ้าการรบกวนมีมากพออย่างมีนัยสำคัญ ก็สามารถปรับเปลี่ยนข้อความหลังถอดรหัสออกมาแล้วได้ ด้วยการแก้ไขข้อผิดพลาดล่วงหน้า เครื่องรับสามารถแก้ไขข้อผิดพลาดของบิตของข้อความที่ถูกส่งมาได้ แต่การรบกวนที่มากเกินไป จะทำให้​​สัญญาณที่ส่งออกไปผิดเพี้ยนไปมาก ซึ่งหมายถึงความล้มเหลวของการส่งการจายคลื่น

อินเทอร์เน็ต

อินเทอร์เน็ตเป็นเครือข่ายทั่วโลกของเครือข่ายคอมพิวเตอร์ที่สามารถสื่อสารกันด้วยอินเทอร์เน็ตโพรโทคอล คอมพิวเตอร์บนอินเทอร์เน็ตใด ๆ จะมี IP address ไม่ซ้ำกันที่จะทำให้คอมพิวเตอร์เครื่องอื่น ๆ สามารถหาเส้นทางไปถึงได้ เครื่องที่ส่งจะมี IP address ของผู้ส่ง และ IP address ของผู้รับ ดังนั้น อินเทอร์เน็ตจึงเป็นการแลกเปลี่ยนข้อมูลระหว่างเครื่องคอมพิวเตอร์ด้วยกัน

คาดกันว่า 51% ของข้อมูลที่ไหลผ่านเครือข่ายโทรคมนาคมสองทางในปี 2000 มีการไหล ผ่านทางอินเทอร์เน็ต (ส่วนที่เหลือ(42%)โดยผ่านทางโทรศัพท์พื้นฐาน) โดยในปี 2007 อินเทอร์เน็ตครอบงำอย่างชัดเจนโดย 97% ของข้อมูลทั้งหมดที่อยู่ในเครือข่ายการสื่อสารโทรคมนาคม (ส่วนที่เหลือ(2 %) ผ่านทางโทรศัพท์มือถือ) ขณะที่ในปี 2013 ประมาณ 39 % ของประชากรโลกที่มีการเข้าถึงกับอินเทอร์เน็ตที่มีอัตราการเข้าถึง สูงสุด(วัดเป็นเปอร์เซ็นต์ของประชากร) ในทวีปอเมริกา (61%), เอเซียแปซิฟิก (32%) และยุโรป (75%)[33] ในแง่ของการเข้าถึงอินเทอร์เน็ตความเร็วสูงด้วย landline ในปี 2012, ลิคเทนสไตน์ (80,4%) โมนาโค (45.5%) และ สวิสเซอร์แลนด์ ( 41.9%) การเข้าถึงอินเทอร์เน็ตความเร็วสูงด้วยโทรศัพท์มือถือ สิงคโปร์ (123.3%), ญี่ปุ่น (113.1%), ฟินแลนด์ (106.5%), เกาหลีใต้ (106%)

         อินเทอร์เน็ตทำงานได้ด้วยโปรโทคอลที่ควบคุมวิธีการที่เครื่องคอมพิวเตอร์และเราเตอร์ทั้งหลายสื่อสารกันและกัน ธรรมชาติของการสื่อสารเครือข่ายคอมพิวเตอร์ใช้วิธีการแบ่งเป็นชั้นของโพรโทคอล ในแต่ละโพรโทคอลจะทำงานมากขึ้นหรือน้อยลงเป็นอิสระจากโพรโทคอลอื่น ๆ การนี้จะช่วยให้โพรโทคอลระดับต่ำกว่าจะได้รับการปรับแต่งสำหรับสถานการณ์เครือข่ายในขณะที่ไม่เปลี่ยนแปลงวิธีที่ระดับโพรโทคอลที่สูงกว่าทำงาน ตัวอย่างในทางปฏิบัติว่าทำไมสิ่งนี้เป็นสิ่งสำคัญ เพราะมันยอมให้อินเทอร์เน็ตเบราว์เซอร์ที่จะเรียกใช้ รหัสเดียวกันโดยไม่คำนึงถึงว่าเครื่องคอมพิวเตอร์ที่กำลังทำงานจะมีการเชื่อมต่อกับอินเทอร์เน็ตผ่านอีเทอร์เน็ตหรือเชื่อมต่อกับ Wi-Fi อยู่ โพรโทคอลมักจะถูกพูดถึงในแง่ของ ตำแหน่งของมันในรูปแบบอ้างอิงกับ OSI (ภาพด้านขวา) ซึ่งเกิดขึ้นในปี 1983 เป็นขั้นตอนแรกในความพยายามที่ไม่ประสบความสำเร็จในการสร้างชุดโพรโทคอลเครือข่ายที่จะนำมาใช้ อย่างกว้างขวาง

สำหรับอินเทอร์เน็ต โพรโทคอลสื่อทางกายภาพและการเชื่อมโยงข้อมูลสามารถแปรผันกัน หลายครั้งในรูปของแพ็กเก็ตที่เดินทางไปรอบโลก นี่เป็นเพราะว่าอินเทอร์เน็ตไม่มีข้อจำกัด ในสื่อทางกายภาพหรือโปรโทคอลในการเชื่อมโยงข้อมูลที่จะถูกนำมาใช้ สิ่งนี้นำไปสู่​​การพัฒนาของสื่อและโพรโทคอลที่เหมาะสมที่สุดกับสถานการณ์เครือข่ายท้องถิ่น ในทางปฏิบัติ การติดต่อสื่อสารระหว่างทวีปส่วนใหญ่จะใช้ Asynchronous Transfer Mode (ATM ) โพรโทคอล (หรือที่ทันสมัยเทียบเท่า​​) บนใยแก้วนำแสง นี้เป็นเพราะการสื่อสารระหว่างทวีปส่วนใหญ่ อินเทอร์เน็ตจะใช้โครงสร้างพื้นฐานร่วมกันกับเครือข่ายโทรศัพท์พื้นฐาน หรือ PSTN

ที่เลเยอร์เครือข่าย หลายอย่างกลายเป็นมาตรฐานที่ Internet Protocol (IP) ถูกนำมาใช้สำหรับการหาที่อยู่แฝง( logical addressing) สำหรับเวิลด์ไวด์เว็บ "ที่อยู่ IP" จะสามารถหาได้จากรูปแบบที่มนุษย์สามารถอ่านได้โดยการใช้ระบบชื่อโดเมน( domain name system) (เช่น 72.14.207.99 ได้มาจาก www.google.com ) ในปัจจุบัน รุ่นของอินเทอร์เน็ตโพรโทคอลที่ใช้กันอย่างแพร่หลายมีความจำเป็นที่จะต้องเปลี่ยนแปลงจากรุ่นที่สี่ไปเป็นรุ่นที่หก
ที่เลเยอร์การขนส่ง การสื่อสารส่วนใหญ่จะใช้โพรโทคอลแบบ Transmission Control Protocol (TCP) หรือ User Datagram Protocol (UDP) อย่างใดอย่างหนึ่ง TCP จะใช้เมื่อ มันเป็นสิ่งจำเป็นที่ทุกๆข้อความที่ส่งจะต้องไปถึงคอมพิวเตอร์ปลายทาง ในขณะที่ UDP เป็นเพียงน่าพอใจที่จะนำมาใช้ ด้วย TCP, แพ็กเก็ตจะถูกส่งใหม่หากพวกมันสูญหายไปและจะถูกจัดลำดับก่อนหลังก่อนที่จะถูกนำเสนอให้กับชั้นที่สูงกว่า ด้วย UDP, แพ็คเก็ตจะไม่ได้เรียงลำดับก่อนหลังหรือหากเกิดการสูญหายก็จะไม่มีการส่งไปให้ใหม่ ทั้ง TCP และ UDP แพ็คเก็ตจะพกพาหมายเลขพอร์ตไปด้วยเพื่อระบุแอปพลิเคชันหรือกระบวนการในการประมวลผลที่ แพ็คเก็ตนั้นควรจะได้รับการจัดการ[38] เพราะ โพรโทคอลในระดับโปรแกรมประยุกต์บางโปรแกรมจะใช้พอร์ตบางพอร์ต ผู้บริหารเครือข่าย สามารถจัดการจราจรเพื่อให้เหมาะกับความต้องการเฉพาะอย่าง ตัวอย่างเช่นเพื่อจำกัดการเข้าถึงอินเทอร์เน็ต จะทำโดยการปิดกั้นการจราจรที่มีทิศทางสำหรับพอร์ตเฉพาะพอร์ตหนึ่งหรือเพื่อที่จะให้เกิดผลกระทบต่อประสิทธิภาพการใช้งานบางอย่าง จะทำโดยการกำหนด ลำดับความสำคัญของงาน
เหนือเลเยอร์ของการขนส่ง มีโพรโทคอลบางอย่างที่บางครั้งถูกใช้และเข้ากันได้อย่างหลวมๆในเลเยอร์เซสชั่นและเลเยอร์ presentation ที่สะดุดตาที่สุดคือโพรโทคอล Secure Sockets Layer (SSL) และ Transport Layer Security (TLS ) โพรโทคอลเหล่านี้ให้ความแน่ใจว่า ข้อมูลที่ถ่ายโอนระหว่างสองฝ่ายยังคงเป็นความลับอย่างสมบูรณ์[39] ในที่สุด ที่ชั้น application ผู้ใช้อินเทอร์เน็ตจำนวนมากจะคุ้นเคยกับโพรโทคอลเช่น HTTP (การท่องเว็บ), POP3 (e-mail), FTP (การถ่ายโอนไฟล์) IRC (พูดคุย), BitTorrent (แชร์ไฟล์) และ XMPP (การส่งข้อความโต้ตอบแบบทันที)
Voice over Internet Protocol (VoIP) ช่วยให้แพ็คเก็ตข้อมูลถูกนำไปใช้สำหรับการสื่อสารด้วยเสียงประสานสองทาง แพ็คเก็ตข้อมูลจะถูกกำหนดให้เป็นประเภทเสียงและสามารถถูก จัดลำดับความสำคัญโดยผู้บริหารเครือข่ายเพื่อให้เป็นเวลาจริง การสนทนาที่ประสานกันจะมีการขัดแย้งน้อยกับการจราจรของข้อมูลประเภทอื่นที่สามารถเลื่อนออกไปได้ (เช่นการถ่ายโอนไฟล์หรืออีเมล) หรือบัฟเฟอร์ล่วงหน้าได้ (เช่นเสียงและวิดีโอ) โดยไม่ได้เสียหาย การจัดลำดับความสำคัญแบบนั้นจะดีเมื่อเครือข่ายมีความจุเพียงพอสำหรับทุกการโทร VoIP ที่เกิดขึ้นในเวลาเดียวกันและเครือข่ายมีการเปิดใช้งานสำหรับจัดลำดับความสำคัญ เช่น เครือข่าย รูปแบบขององค์กรภาคเอกชน แต่อินเทอร์เน็ตไม่ได้รับการจัดการโดยทั่วไปในทางนี้และเพื่อให้มีความแตกต่างในคุณภาพของการโทรผ่าน VoIP ที่เหนือกว่าเครือข่ายส่วนตัวและเหนือกว่าอินเทอร์เน็ตสาธารณะ

แหล่งที่มา 
https://th.wikipedia.org/wiki/%E0%B9%82%E0%B8%97%E0%B8%A3%E0%B8%84%E0%B8%A1%E0%B8%99%E0%B8%B2%E0%B8%84%E0%B8%A1
https://www.gotoknow.org/posts/282028
https://sites.google.com/site/41127yanotai/khatham/khorngsrang-kherux-khay-khxmphiwtexr
https://jhanu.wikispaces.com/%E0%B8%8A%E0%B9%88%E0%B8%AD%E0%B8%87%E0%B8%97%E0%B8%B2%E0%B8%87%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AA%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%AA%E0%B8%B2%E0%B8%A3%E0%B8%82%E0%B9%89%E0%B8%AD%E0%B8%A1%E0%B8%B9%E0%B8%A5
http://www.888networkandsales.com/%E0%B8%97%E0%B8%B3%E0%B8%84%E0%B8%A7%E0%B8%B2%E0%B8%A1%E0%B8%A3%E0%B8%B9%E0%B9%89%E0%B8%88%E0%B8%B1%E0%B8%81%E0%B8%81%E0%B8%B1%E0%B8%9A%E0%B8%AD%E0%B8%B8%E0%B8%9B%E0%B8%81%E0%B8%A3%E0%B8%93%E0%B9%8C%E0%B9%80%E0%B8%8A%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%A1%E0%B8%95%E0%B9%88%E0%B8%AD%E0%B9%80%E0%B8%84%E0%B8%A3%E0%B8%B7%E0%B8%AD%E0%B8%82%E0%B9%88%E0%B8%B2%E0%B8%A2.html
http://www.bansoengsang.com/articles/405860/%E0%B8%A3%E0%B8%B0%E0%B8%9A%E0%B8%9A%E0%B9%80%E0%B8%84%E0%B8%A3%E0%B8%B7%E0%B8%AD%E0%B8%82%E0%B9%88%E0%B8%B2%E0%B8%A2%E0%B8%84%E0%B8%AD%E0%B8%A1%E0%B8%9E%E0%B8%B4%E0%B8%A7%E0%B9%80%E0%B8%95%E0%B8%AD%E0%B8%A3%E0%B9%8C.html

วันอาทิตย์ที่ 19 กรกฎาคม พ.ศ. 2558

อุปกรณ์คอมพิวเตอร์

ครื่องฉายภาพ หรือ วิดีโอโปรเจกเตอร์ 
เครื่องฉายภาพ หรือ วิดีโอโปรเจกเตอร์ ( video projector) เป็นอุปกรณ์สำหรับฉายภาพจากสัญญานวิดีโอ ผ่านระบบเลนส์ไปยังฉากรับภาพ โดยใช้ไฟที่สว่างและจ้าในการฉายภาพ โดยเครื่องฉายภาพรุ่นใหม่ สามารถแก้ไข ส่วนโค้งเว้า ความคมชัด ส่วนประกอบของภาพ และอื่น ๆ ด้วยการปรับโดยผู้ใช้เอง วิดีโอเครื่องฉายภาพ ถุกใช้อย่างกว้างขวางในการนำเสนองานในห้องประชุม ห้องเรียน หรือ แม้แต่ ใช้เป็น โฮมเทียเตอร์ เครื่องฉายภาพ จึงกลายเป็นที่นิยมและถูกใช้อย่างกว้างขวาง
        ปัจจุบันกระแสจอแบน ได้เข้ามาแซงจอธรรมดา โดยเฉพาะประเด็นขนาดรูปทรง ที่โดดเด่น ประหยัดพื้นที่ในการวาง รวมทั้งจุดเด่นของจอภาพแบน ก็คือประหยัดพลังงาน โดยจอภาพขนาด 15 - 17 นิ้ว ใช้พลังงานเพียง 20 - 30 วัตต์ และจะลดลงเหลือ 5 วัตต์ในโหมด Standby ในขณะที่จอธรรมดา ใช้พลังงานถึง 80 - 100 วัตต์
ปัจจุบันมีการพัฒนาจอภาพออกมาหลากหลายลักษณะ โดยเน้นที่จำนวนสี ความละเอียด ความคมชัด การประหยัดพลังงาน โดยสามารถแบ่งประเภทจอภาพ ที่ใช้ในปัจจุบันได้กลุ่มใหญ่ๆ ดังนี้
  1. จอภาพสีเดียว (Monochrome Monitor) 
    จอภาพที่รับสัญญาณจากการ์ดควบคุม ในลักษณะของสัญญาณดิจิตอล คือ 0 กับ 1 โดยการกวาดลำอิเล็กตรอนไปตกหน้าจอ แล้วเกิดเป็นจุดเรืองแสง จะให้สัญญาณว่าจุดไหนสว่าง จุดไหนดับ จอภาพสีเดียวเวลานี้ไม่มีผู้นิยมแล้ว
  2. จอภาพหลายสี (Color Monitor) 
    จอภาพที่รับสัญญาณดิจิตอล 4 สัญญาณ คือ สัญญาณของสีแดง, เขียว, น้ำเงิน และสัญญาณความสว่าง ทำให้สามารถแสดงสีได้ 16 สี ถึง 16 ล้านสี
  3. จอภาพแบบแบน (LCD; Liquid Crystal Display) 
    จอภาพผลึกเหลวใช้งานกับคอมพิวเตอร์ประเภทพกพาเป็นส่วนใหญ่ เป็นแบ่งได้เป็น
    1. Active matrix จอภาพสีสดใสมองเห็นจากหลายมุม เนื่องจากให้ความสว่าง และสีสันในอัตราที่สูง มีชื่อเรียกอีกชื่อว่า TFT – Thin Film Transistor และเนื่องจากคุณสมบัติดังกล่าว ทำให้ราคาของจอประเภทนี้สูงด้วย
    2. Passive matrix color จอภาพสีค่อนข้างแห้ง เนื่องจากมีความสว่างน้อย และสีสันไม่มากนัก ทำให้ไม่สามารถมองจากมุมมองอื่นได้ นอกจากมองจากมุมตรง เรียกอีกชื่อได้ว่า DSTN – Double Super Twisted Nematic
  4.  จอภาพแอลอีดี LED (ไดโอดเปล่งแสง) ย่อมาจาก Light-emitting-diodสามารถเปล่งแสงออกมาได้แสงที่เปล่งออกมาประกอบด้วยคลื่นความถี่เดียวและเฟสต่อเนื่องกัน ซึ่งต่างกับแสงธรรมดาที่ตาคนมองเห็น โดยหลอด LED สามารถเปล่งแสงได้เมื่อจ่ายกระแสไฟฟ้าเข้าเพียงเล็กน้อยเท่านั้น และประสิทธิภาพในการให้แสงสว่างก็ยังดีกว่าหลอดไฟขนาดเล็กทั่วๆ ไป LED โดยทั่วไปมี 2 ชนิดใหญ่ ๆ คือ 1) LED ชนิดที่ตาคนเห็นได้ กับ 2) ชนิดที่ตาคนมองไม่เห็นต้องใช้ทรานซิสเตอร์มาเป็นตัวรับแสงแทนตาคน
                    ปัจจุบันจากความก้าวหน้าอย่างรวดเร็วของเทคโนโลยีเซมิคอนดักเตอร์ ทำให้เทคโนโลยีของ LED ก้าวหน้าอย่างรวดเร็วตามไปด้วย LED ได้ถูกพัฒนาขึ้นเรื่อยๆ ทั้งในด้านสีของแสงที่เปล่งออกมาไม่ว่าจะเป็นสีแดง ,สีเขียว ,สีส้ม หรือที่ผลิตได้ท้ายสุด และทำให้วงการแอลอีดีพัฒนาขึ้นอย่างรวดเร็วคือสีน้ำเงิน ซึ่งการเกิดขึ้นของแอลอีดีสีน้ำเงินนี้ ทำให้ครบแม่สี 3 สี คือ สีแดง สีเขียว และสีน้ำเงิน และเกิดเป็นจุดเริ่มต้นของจอแอลอีดี และแอลอีดีในงานไฟประดับต่างๆ, ทั้งยังใช้ประโยชน์แพร่หลายมากขึ้นเรื่อยๆ เช่น ในเครื่องคิดเลข สัญญาณจราจร ไฟท้ายรถยนต์ ป้ายสัญญาณต่างๆ ไฟฉาย ไฟให้สัญญาณของประภาคาร จอภาพยนตร์ขนาดใหญ่ ยิ่งไปกว่านั้น หน้าจอ LCD ของโทรศัพท์มือถือที่เราใช้กันทั่วไป เกือบทั้งหมดจะให้แสงสว่างด้วย LED
ข้อดีของแอลอีดี
  • ประสิทธิภาพในการให้แสงสว่างดีกว่าหลอดไฟธรรมดาทั่วๆไป.
  • ตัวหลอด LED เองเมื่อทำให้เกิดแสงขึ้นจะกินกระแสน้อยมากประมาณ 1-20mA
  • มีอายุการใช้งานที่ยาวนาน ประมาณ 50,000 – 100,000 ชั่วโมง ขึ้นอยู่กับคุณภาพของแอลอีดี วงจรขับกระแส สภาพภูมิอากาศ ความชื้น และอุณหภูมิ ซึ่งก็มีอายุการใช้งานที่ยาวนานกว่าหลอดที่ให้แสงสว่างชนิดอื่นๆมาก
  • ไม่มีรังสีอินฟาเรต รังสีอัลตราไวโอเรต ซึ่งเป็นอันตรายต่อผิวหนัง
  • ทนทานต่อสภาวะอากาศ
  • ทนทานต่อการสั่นสะเทือน
  • มีหลากหลายสีให้เลือกใช้
     5.จอ 3D (3 Dimension)  ระบบแสดงผลภาพ 3D แบ่งเป็น 2 แบบ คือ 
1.Active: จอโทรทัศน์จะส่งภาพของตาซ้ายและขวาสลับกันไป โดยแว่นจะต้องซิงก์โครไนซ์สัญญาณให้ตรงกับโทรทัศน์ คือ จะปิดตาซ้าย (มืด) เมื่อโทรทัศน์ฉายภาพสำหรับตาขวา และปิดตาขวา เมื่อโทรทัศน์ฉายภาพสำหรับตาซ้าย ซึ่งแว่นจะสลับมืด-สว่างทีละข้างอย่างรวดเร็ว ปัญหาคือบางทีการซิงก์โครไนซ์อาจมีจังหวะที่ไม่ตรงกับโทรทัศน์ และอาจปวดตาเพราะเรามองภาพมืด-สว่างสลับไปมาอย่างรวดเร็วตลอดเวลา 



2. Passive: ใช้หลักการ Polarized กล่าวคือ คลื่นที่ระนาบ Polarize เดียวกันจะผ่านเข้ามาได้หมด แต่ถ้าตั้งฉากกันก็จะผ่านเข้ามาไม่ได้ โทรทัศน์จะส่งภาพ Polarized ที่ตั้งฉากกันสำหรับตาซ้ายและขวาออกมาพร้อมกันโดยสลับแถวกัน

จากนั้นจะแยกภาพนี้ออกจากกันโดยแว่น Polarized ซึ่งเมื่อตาซ้ายและขวาตั้งฉากกัน ภาพเส้นเลขคู่ก็จะเข้าตาซ้ายอย่างเดียว ส่วนเส้นคี่จะเข้าตาขวาอย่างเดียว ข้อดีก็คือไม่กระพริบ ไม่ปวดตา แต่ข้อเสียคือภาพที่เห็นความละเอียดจะลดลง เพราะเราเห็นภาพแค่ครึ่งหนึ่งของความละเอียดจอเท่านั้น

           เครื่องฉายโปรเจ็คเตอร์ (Projector) เป็นเครื่องฉายภาพจากสัญญานวิดีโอ ผ่านระบบเลนส์ไปยังฉากรับภาพ โดยใช้ไฟที่สว่างและจ้าในการฉายภาพ โดยเครื่องโปรเจกต์เตอร์รุ่นใหม่ สามารถแก้ไข ส่วนโค้งเว้า ความคมชัด ส่วนประกอบของภาพ และ อื่นๆ ด้วยการปรับโดยผู้ใช้เอง วิดีโอโปรเจกต์เตอร์ ถุกใช้อย่างกว้างขวางในการนำเสนองานในห้องประชุม ห้องเรียน หรือ แม้แต่ ใช้เป็น โฮมเทียเตอร์ โปรเจกต์เตอร์ จึงกลายเป็นที่นิยมและถูกใช้อย่างกว้างขวาง


เครื่องโปรเจกต์เตอร์ในปัจจุบัน มีเทคโนโลยีที่ใช้ 3 ชนิด คือ
  • เครื่องฉายภาพชนิดหลอดรังสีแคโทด (CRT projector) ใช้หลอดรังสีแคโทด จะมีสามหลอดสี คือ สีน้ำเงิน สีเขียว และสีแดง โดยหลอดสีทั้งสามสามารถเลื่อนเพื่อปรับองศาของภาพให้ถูกต้องได้ เครื่องฉายภาพชนิดนี้เป็นชนิดที่เก่าแก่ที่สุด ไม่จำเป็นต้องดูแลรักษามาก แต่ดูไม่สวยงามเพราะเครื่องฉายมีขนาดใหญ่ แต่มีข้อดีคือสามารถฉายภาพให้เป็นภาพขนาดใหญ่ในราคาที่ถูกกว่า

  • เครื่องฉายภาพชนิดฉายแสงผ่านแผ่นแอลซีดี (LCD projector) เป็นเครื่องฉายภาพที่มีระบบกลไกข้างในที่ไม่ซับซ้อน ทำให้เป็นเครื่องฉายภาพที่ถูกใช้อย่างกว้างขวาง เพราะราคาถูก เครื่องฉายภาพชนิดนี้มีปัญหาด้านการมองเรียกว่า screen door effect หรือ pixilation effect ซึ่งเราจะมองเห็นภาพเป็นจุด เป็นเหลี่ยมขนาดเล็ก และหลอดไฟมีราคาสูง
การฉายภาพบนเครื่องฉายภาพชนิดแอลซีดี ใช้หลอดไฟชนิดเมทัลฮาไลด์ ส่งแสงไปยังปริซึมเพื่อกระจายแสงไปยังแผงซิลิคอนสามสี คือ แดง เขียว น้ำเงิน เพื่อส่งภาพเป็นสัญญาณวิดีโอ เมื่อแสงผ่านแผงซิลิคอนนี้แล้ว แต่ละพิกเซลจะเปิดออกหรือปิดลง เพื่อให้ภาพ ทั้งระดับสีและการไล่สีตามที่ต้องการ สาเหตุที่เราใช้ หลอดเมทัลฮาไลด์เพราะสามารถให้อุณหภูมิของสีและระดับสีที่ถูกต้องที่สุด ทั้งยังสามารถให้ความสว่างของแสงสูงในพื้นที่ที่มีขนาดเล็กได้ เครื่องฉายภาพแอลซีดีรุ่นปัจจุบัน จะมีความสว่างประมาณ 2000-4000 ลูเมน

  • เครื่องฉายภาพชนิด DLP (DLP projector) ใช้เทคโนโลยีที่ชื่อว่า Digital Light Processor ของ Texas Instrument มีตัวกำเนิดแสงที่เล็กมากเรียกว่า Digital Micromirror Device (DMDs) เครื่องฉายภาพชนิดนี้ทำงานโดยปรกติจะใช้ DMD 2 ตัวจะใช้จานหมุนติดกระจกเพื่อสร้างสี
ปัญหาของเครื่องฉายภาพชนิดนี้คือ Rainbow effect คือผู้ที่ดูภาพที่ฉายไปสีขาว เป็นสีรุ้ง แต่สามารถแก้ปัญหาได้โดยใช้ระบบใหม่ซึ่งใช้ DMD 3 ตัว ความเร็วในการหมุนของจานหมุนติดกระจกที่สูงขึ้น และสามารถให้สีหลักได้อย่างถูกต้อง




เครื่องฉายโปรเจ็คเตอร์แบบพกพา (Mini - Projector) 
        
      1. AV Mini Projector เป็นมินิโปรเจคเตอร์ ที่ออกแบบมาเพื่องานบันเทิงโดยเฉพาะ มีขนาดเล็กกระทัดรัด รองรับ AV , VGA และ SD Card ซึ่งสามารถดูหนัง ฟังเพลง รวมถึงเล่นเกมส์ได้อีกด้วย เพื่อความบันเทิงที่มากยิ่งขึ้นเราออกแบบให้ตัวเครื่องเป็น มินิโปรเจคเตอร์ที่รองรับ VGA USB และ SD การ์ด เพื่อรองรับความบันเทิงทั้งหนัง หรือเพลง MP3/MP4 รวมถึงการ Present งาน ข้อมูลอีกอย่างที่ผู้ซื้อจำเป็นต้องรู้คือขนาดของภาพจะอยู่ประมาณ 45-75 นิ้ว และสามารถใช้กับคอมพิวเตอร์ได้โดยตรง


         2. Mobile Mini Projector ซึ่งสามารถใช้งานร่วมกับอุปกรณ์ต่างๆ ไม่ว่าจะเป็น สมาร์ทโฟน เครื่องเล่นมีเดีย สามารถใช้ฉายภาพที่ความสว่าง 20 ลูเมนส์ได้นาน 2 ชั่วโมงต่อเนื่อง อีกทั้งยังสามารถแสดงผลที่ความละเอียด nHD (640 x 360 พิกเซล) ลำโพงขนาด 0.5 วัตต์ในตัว ฉายภาพได้ใหญ่สุด 1.27 เมตร (ตามแนวเส้นทะแยงมุม)


แหล่งที่มา
https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%84%E0%B8%A3%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%87%E0%B8%89%E0%B8%B2%E0%B8%A2%E0%B8%A0%E0%B8%B2%E0%B8%9E
http://www.radompon.com/ictelearning/contentictm1/u01/u107.html

สแกนเนอร์ (Scanner) 
สแกนเนอร์ คือ อุปกรณ์จับภาพและเปลี่ยนแปลงภาพ จากรูปแบบของแอนาลอกเป็นดิจิตอล ซึ่งคอมพิวเตอร์ สามารถแสดง, เรียบเรียง, เก็บรักษาและผลิตออกมาได้ ภาพนั้นอาจจะเป็นรูปถ่าย, ข้อความ, ภาพวาด หรือแม้แต่วัตถุสามมิติ สแกนเนอร์แบ่งป็น 3 ประเภทหลัก ๆ คือ
1. สแกนเนอร์ดึงกระดาษ (Sheet - Fed Scanner)
2. สแกนเนอร์แท่นเรียบ (Flatbed Scanner)
3. สแกนเนอร์มือถือ (Hand - Held Scanner)


          สแกนเนอร์ดึงกระดาษ (Sheet - Fed Scanner)

สแกนเนอร์ แบบนี้จะรับกระดาษแล้วค่อย ๆ เลื่อนหน้ากระดาษแผ่นนั้นให้ผ่านหัวสแกน ซึ่งอยู่กับที่ข้อจำกัดของสแกนเนอร์ แบบเลื่อนกระดาษ คือสามารถอ่านภาพที่เป็นแผ่นกระดาษได้เท่านั้น ไม่สามารถ อ่านภาพจากสมุดหรือหนังสือได้

สแกนเนอร์มือถือ (Hand - Held Scanner)
สแกนเนอร์ แบบนี้ผู้ใช้ต้องเลื่อนหัวสแกนเนอร์ไป บนหนังสือหรือรูปภาพเอง สแกนเนอร์ แบบมือถือได้รวม เอาข้อดีของสแกนเนอร์ ทั้งสองแบบเข้าไว้ด้วยกันและมีราคาถูก เพราะกลไกที่ใช้ไม่ สลับซับซ้อน แต่ก็มีข้อจำกัด ตรงที่ว่าภาพที่ได้จะมีคุณภาพแค่ไหน ขึ้นอยู่กับความสม่ำเสมอ ในการเลื่อนหัวสแกนเนอร์ของผู้ใช้งาน นอกจากนี้หัวสแกนเนอร์แบบนี้ยังมีหัวสแกนที่มีขนาดสั้น ทำให้ อ่านภาพบนหน้าหนังสือขนาดใหญ่ได้ไม่ครบ 1 หน้า ทำให้ต้องอ่านหลายครั้งกว่าจะครบหนึ่งหน้า ซึ่งปัจจุบันมีซอฟต์แวร์หลายตัว ที่ใช้กับสแกนเนอร์ แบบมือถือ ซึ่งสามารถต่อภาพที่เกิดจากการสแกนหลายครั้งเข้าต่อกัน



สแกนเนอร์แท่นเรียบ (Flatbed Scanner)
สแกนเนอร์ แบบนี้จะมีกลไกคล้าย ๆ กับเครื่องถ่ายเอกสาร เราแค่วางหนังสือหรือภาพไว้ บนแผ่นกระจกใส และเมื่อทำการสแกน หัวสแกนก็จะเคลื่อนที่จากปลายด้านหนึ่งไปยังอีกด้านหนึ่ง ข้อจำกัดของสแกนเนอร์ แบบแท่นนอนคือแม้ว่าอ่านภาพจากหนังสือได้ แต่กลไกภายในต้องใช้ การสะท้อนแสงผ่านกระจกหลายแผ่น ทำให้ภาพมีคุณภาพไม่ดีเมื่อเทียบกับแบบแรก


ปัจจุบันสแกนเนอร์รุ่นใหม่ๆ มีขีดความสามารถในการใช้งานมากขึ้นทั้งในเรื่องของความเร็ว และความละเอียดของภาพที่ได้จากการสแกน นอกจากนี้ยังสามารถสแกนจากวัตถุอื่นๆ ที่ไม่ใช่กระดาษเพียงอย่างเดียว เช่น วัตถุ 3 มิติ ที่มีขนาดและน้ำหนักที่ไม่มากจนเกินไป หรือแม้กระทั่งฟิล์มและสไลด์ของภาพต้นฉบับเข้าสู่เครื่องคอมพิวเตอร์ได้เลยโดยที่ผู้ใช้ไม่จำเป็นต้องไปอัดขยายเป็นภาพถ่ายปกติเหมือนในอดีต
สแกนเนอร์ 3 มิติ (3D scanner) เป็นเครื่องมือที่ใช้ในการเก็บภาพหรือรายละเอียดจากวัตถุ โดยทำการสแกน หรือ เก็บข้อมูล และจากนั้นจะถูกส่งจากเครื่องสแกนเนอร์เข้าไปสู่คอมพิวเตอร์ในลักษณะจุดใน พิกัด 3 มิติ ที่เรียกว่า พอยต์คลาวด์ เพื่อนำไปคำนวณผลต่อไป โดยเป็นอุปกรณ์ที่นิยมใช้งานในการถ่ายทำภาพยนตร์ และวีดีโอเกม
สแกนเนอร์เลเซอร์ 3 มิติ ทำงานโดยเครื่องจะยิงเลเซอร์ออกจากเครื่อง และรอเลเซอร์สะท้อนจากวัตถุกลับเข้าไปสแกนเนอร์ และทำการวัดระยะเวลาในการเดินทางของเลเซอร์ เพื่อคำนวณหาระยะทางของตำแหน่งกล้องเทียบกับวัตถุ จากสมการของความเร็ว ในลักษณะของไลดาร์ (LIDAR, Laser Detection and Ranging)
สแกนเนอร์เลเซอร์ 3 มิติ มีลักษณะขึ้นอยู่กับลักษณะการใช้งาน ตั้งแต่ การทำรังวัด สแกนเนอร์จะมีขนาดใหญ่ และสามาระวัดระยะทางได้ไกล หรือการวัดวัตถุสำหรับทำโมลของเครื่องจักร ซึ่งจะใช้สแกนเนอร์ระยะใกล้ที่ความละเอียดสูง





           เทคโนโลยีการสแกนภาพ



- แบบ PMT (Photomultiplier Tube) 
เทคโนโลยี แบบ PMT หรือ Photomultiplier tube ใช้หัวอ่านที่ทำจากหลอดสูญญากาศให้เป็นสัญญาณ ไฟฟ้าและสามารถขยาย สัญญาณได้กว่าร้อยเท่า ทำให้ภาพที่ได้มีความละเอียดสูงและมีราคาแพง
- แบบ CIS (Contact Image Sensor) 
เทคโนโลยี แบบ CIS หรือ Contact image sensor ใช้เทคโนโลยีเซนเซอร์แบบสัมผัสภาพซึงเป็นระบบการทำงานที่ตัวรับแสง จะรับแสงที่สะท้อนกลับจากภาพมายังตัวเซนเซอร์โดยตรงไม่ต้องผ่านกระจกเลนส์ ลำแสงสีขาวที่ใช้ในการสแกนจะมี 3 หลอดสีคือ สีแดง , น้ำเงิน และ เขียว ทั้ง 3 หลอดจะสร้างแสงสีขาวขึ้นมาเพื่อใช้สแกน สำหรับสแกนเนอร์ที่ใช้ระบบ CIS นี้ ให้ความละเอียดสูงสุดได้ประมาณ 600 จุดต่อนิ้วเท่านั้น ระบบนี้จะมีข้อจำกัดเรื่องของการโฟกัส คือ ไม่สามารถโฟกัสได้เกิน 0.2 มม. จึงทำให้ไม่สามารถสแกนวัตถุที่มีความลึกหรือวัตถุ 3 มิติได้
- แบบ CCD (Charge-Coupled Deiver) 
เทคโนโลยี แบบ CCD หรือ Charged-coupled device ใช้หัวอ่านที่ไวต่อการรับแสงและสามารถแปลงเป็นสัญญาณไฟฟ้า สแกนเนอร์ส่วนใหญ่ใช้เซนเซอร์แบบ CCD จึงทำให้สามารถสแกนวัตถุที่มีความลึกหรือวัตถุ 3 มิติได้ แต่รูปทรงจะมีขนาดใหญ่กว่าแบบ CIS เพื่อรองรับแผงวงจรที่ใช้พลังงานสูง การทำงานของสแกนเนอร์แบบ CCD คือการส่องแสงไปที่วัตถุที่ต้องการสแกน เมื่อแสงสะท้อนกับวัตถุและสะท้อนกลับมาจะถูกส่งผ่านไปที่ CCD เพื่อตรวจวัดความเข้มข้นของแสงที่สะท้อน กลับออกมาจากวัตถุ และแปลงความเข้มของแสงให้เป็นข้อมูลทางดิจิตอล เพื่อส่งผ่านไปยังคอมพิวเตอร์เพื่อประมวลภาพหรือสีนั้นๆ ออกมา ในลักษณะความเข้มข้นของแสงที่ออกมาจากวัตถุ (ส่วนของสีที่มีสีเข้มจะสะท้อนแสงน้อยกว่าส่วนที่มีสีอ่อน) การทำงานของเครื่องสแกนเนอร์จะถูกควบคุมโดยซอฟแวร์ที่เรียกว่า TWAIN ซึ่งจะควบคุมการอ่านข้อมูลที่อยู่ในรูปดิจิตอล เป็นข้อมูลที่ CCD สามารถตรวจจับปริมาณความเข้มข้นของแสงที่สะท้อนออกมาจากวัตถุนั้น แต่ในกรณีที่วัตถุนั้นเป็นลักษณะโปร่งแสง เช่น ฟิล์ม หรือแผ่นใส แสงที่ออกมาจากเครื่องสแกนเนอร์ จะทะลุผ่านม่านวัตถุนั้นออกไป โดยจะไม่มีการสะท้อน หรือถ้ามีการสะท้อน ก็จะน้อยมากจน CCD ตรวจจับความเข้มของแสงนั้นไม่ได้ หรือถ้าได้ก็อาจเป็นข้อมูลที่มีความผิดเพี้ยนไป ดังนั้นการสแกนวัตถุที่มีลักษณะโปร่งแสงนั้น ต้องมีชุดหลอดไฟส่องสว่างด้านบนของวัตถุนั้น ซึงอุปกรณ์ชนิดนี้ได้แก่ Transparency Unit หรือ Film Adapter
ประเภทของภาพที่เกิดจากการสแกน แบ่งเป็นประเภทดังนี้

- ภาพ Single Bit เป็นภาพที่มีความหยาบมากที่สุดใช้พื้นที่ในการเก็บข้อมูล น้อยที่สุดและ นำมาใช้ประโยชน์อะไรไม่ค่อยได้ แต่ข้อดีของภาพประเภทนี้คือ ใช้ทรัพยากรของเครื่องน้อยที่สุดใช้พื้นที่ ในการเก็บข้อมูลน้อยที่สุด ใช้ระยะเวลาในการสแกนภาพน้อยที่สุด Single-bit แบ่งออกได้สองประเภทคือ 

- Line Art ได้แก่ภาพที่มีส่วนประกอบเป็นภาพขาวดำ ตัวอย่างของภาพพวกนี้ ได้แก่ ภาพที่ได้จากการสเก็ต 
- Halftone ภาพพวกนี้จะให้สีที่เป็นโทนสีเทามากกว่า แต่โดยทั่วไปยังถูกจัดว่าเป็นภาพประเภท Single-bit เนื่องจากเป็นภาพหยาบๆ
- ภาพ Gray Scale ภาพพวกนี้จะ มีส่วนประกอบมากกว่าภาพขาวดำ โดยจะประกอบด้วยเฉดสีเทาเป็นลำดับขั้น ทำให้เห็นรายละเอียดด้านแสง-เงา ความชัดลึกมากขึ้นกว่าเดิม ภาพพวกนี้แต่ละพิกเซลหรือแต่ละจุดของภาพอาจประกอบด้วยจำนวนบิตมากกว่า ต้องการพื้นที่เก็บข้อมูลมากขึ้น
- ภาพสี หนึ่งพิกเซลของภาพสี นั้นประกอบด้วยจำนวนบิตมหาศาล และใช้พื้นที่เก็บข้อมูลมาก ควาามสามารถในการสแกนภาพออกมาได้ละเอียดขนาดไหนนั้นขึ้นอยู่กับว่าใช้ สแกนเนอร์ขนาดความละเอียดเท่าไร 

- ตัวหนังสือ ในที่ นี้ ได้แก่ เอกสารต่างๆ เช่น ต้องการเก็บเอกสารโดยไม่ต้อง พิมพ์ลงในแฟ้มเอกสารของเวิร์ดโปรเซสเซอร์ ก็สามารถใช้สแกนเนอร์สแกนเอกสาร ดังกล่าว และเก็บไว้เป็นแฟ้มเอกสารได้ นอก จากนี้ด้วยเทคโนโลยีปัจจุบันสามารถใช้ โปรแกรมที่สนับสนุน OCR (Optical Characters Reconize) มาแปลงแฟ้มภาพเป็น เอกสารดังกล่าวออกมาเป็นแฟ้มข้อมูลที่สามารถแก้ไขได้

แหล่งที่มา
http://servicehardware.exteen.com/20100106/scanner
http://www.prakan.ac.th/Link-Data/web-it/data/web%20dream/scanner.htm
https://th.wikipedia.org/wiki/%E0%B8%AA%E0%B9%81%E0%B8%81%E0%B8%99%E0%B9%80%E0%B8%99%E0%B8%AD%E0%B8%A3%E0%B9%8C_3_%E0%B8%A1%E0%B8%B4%E0%B8%95%E0%B8%B4


ดาวเทียมสื่อสาร

ดาวเทียมสื่อสาร (communication satellite หรือเรียกสั้นๆ ว่า comsat) เป็นดาวเทียมที่มีจุดประสงค์เพื่อการสื่อสารและโทรคมนาคม จะถูกส่งไปในช่วงของอวกาศเข้าสู่วงโคจรโดยมีความห่างจากพื้นโลกโดยประมาณ 35.786 กิโลเมตร ซึ่งความสูงในระดับนี้จะเป็นผลทำให้เกิดแรงดึงดูดระหว่างโลกกับดาวเทียม ในขณะที่โลกหมุนก็จะส่งแรงเหวี่ยง ทำให้ดาวเทียมเกิดการโคจรรอบโลกตามการหมุนของโลก
การสื่อสารผ่านดาวเทียม (Satellite Communication)
มนุษย์ได้คิดค้นดาวเทียมขึ้นมาเพื่อให้สามารถติดต่อสื่อสารกันได้ในระยะทางไกลๆ โดยดาวเทียมที่สร้างขึ้นในสมัยแรก ๆ นั้นจะทำหน้าที่เป็นตัวสะท้อนคลื่นวิทยุความถี่ไมโครเวฟต่อมาได้มีการพัฒนาให้มีการติดตั้งอุปกรณ์รับส่งคลื่นไมโครเวฟเข้าไปในตัวดาวเทียม เพื่อใช้ทวนสัญญาณความถี่ไมโครเวฟแล้วแปลงความถี่ให้แตกต่างกันก่อนส่งมายังโลก ดาวเทียมสามารถโคจรรอบโลกได้โดยอาศัยแรงดึงดูดของโลก ส่งผลให้โคจรรอบโลกได้ในลักษณะเดียวกันกับดวงจันทร์และดวงอาทิตย์ 
ประเภทของดาวเทียม ซึ่งสามารถแบ่งดาวเทียมตามลักษณะของการใช้งานได้ดังนี้
   1 ดาวเทียมสื่อสาร ใช้เพื่อการสื่อสารโทรคมนาคม ซึ่งจะต้องทำงานอยู่ตลอดเวลา 24 ชั่วโมง เพื่อเชื่อมโยงเครือข่ายการสื่อสารของโลกเข้าด้วยกัน เช่น การถ่ายทอดสัญญาณโทรทัศน์ทั้งในประเทศ และข้ามทวีป การติดต่อสื่อสารทางโทรศัพท์มือถือ และอินเตอร์เน็ต เป็นต้น อายุการใช้งานของดาวเทียมชนิดนี้จะมีอายุใช้งานประมาณ 10-15 ปี เมื่อส่งดาวเทียมสื่อสารขึ้นไปโคจรดาวเทียมจะพร้อมทำงานโดยทันที ซึ่งจะส่งสัญญาณไปยังสถานีภาคพื้นดิน และที่สถานีภาคพื้นดินจะมีอุปกรณ์รับสัญญาณที่เรียกว่า ทรานสปอนเดอร์ (Transponder) เพื่อทำหน้าที่รับสัญญาณแล้วกระจายไปยังสถานีต่างๆ บนพื้นผิวโลก ดาวเทียมสื่อสารจะทำงานโดยอาศัยหลักการส่งสัญญาณ ถึงกันระหว่างสถานีภาคพื้นดินและสถานีอวกาศ ซึ่งวิถีการโคจรของดาวเทียมชนิดนี้เป็นวงโคจรค้างฟ้า ดาวเทียมสื่อสารที่ใช้ในประเทศไทยก็คือ ดาวเทียมไทยคม 1-5 ดาวเทียมไทยคมจะมีรัศมีการให้บริการครอบคลุมทั่วทั้งประเทศไทยและประเทศใกล้เคียง


   2 ดาวเทียมสำรวจทรัพยากร ใช้เพื่อศึกษาลักษณะทางภูมิศาสตร์ของโลก ไม่ว่าจะเป็นธรณีวิทยา อุทกวิทยา การสำรวจพื้นที่ป่าไม้ พื้นที่ทางการเกษตรการใช้ที่ดิน และน้ำ เป็นต้น ดาวเทียมสำรวจทรัพยากรดวงแรกของโลกคือดาวเทียม Landset ถูกส่งขึ้นไปสู่วงโคจรเมื่อ พ.ศ. 2515 ดาวเทียมชนิดนี้จะออกแบบให้มีความสามารถในการถ่ายภาพจากดาวเทียมและการติดต่อสื่อสารในระยะไกลซึ่งเรียกว่า การสำรวจจากระยะไกล (Remote Sensing) เพื่อที่จะสามารถแยกแยะจำแนก และวิเคราะห์ข้อมูลต่างๆ ได้ถูกต้อง สำหรับประเทศไทยนั้นกระทรวงวิทยาศาสตร์และเทคโนโลยีได้ลงนามร่วมมือกับบริษัท Astrium S.A.S.ประเทศฝรั่งเศส เพื่อสร้างดาวเทียมสำรวจทรัพยากรเมื่อวันที่ 19 กรกฎาคม 2547 ในชื่อโครงการธีออส


   3 ดาวเทียมอุตุนิยมวิทยา ใช้เพื่อให้ข้อมูลเกี่ยวกับสภาพภูมิอากาศ เช่น ข่าวสารพายุ อุณหภูมิ และสภาพทางภูมิอากาศต่างๆ เพื่อนำข้อมูลที่ได้มาใช้
วิเคราะห์สำหรับประกาศเตือนภัยพิบัติต่างๆ ให้ทราบ ดาวเทียมอุตุนิยมวิทยานี้จะให้ข้อมูลด้วยภาพถ่ายเรดาร์ และภาพถ่ายอินฟราเรดสำหรับใช้ในการวิเคราะห์
ดาวเทียมอุตุนิยมวิทยาดวงแรกของโลกคือ ดาวเทียม Essa 1 ของประเทศสหรัฐอเมริกา ซึ่งถูกส่งขึ้นไปโคจรในอวกาศเมื่อปี พ.ศ. 2509 ดาวเทียมชนิดนี้ได้แก่
ดาวเทียม GMS-5 และดาวเทียม GOES-10 เป็นของประเทศญี่ปุ่น ส่วนดาวเทียม NOAA เป็นของประเทศสหรัฐอเมริกา และดาวเทียม FY-2 ของประเทศจีน


 4 ดาวเทียมบอกตำแหน่ง ใช้เพื่อเป็นระบบนำร่องให้กับเรือและเครื่องบิน ตลอดจนใช้บอกตำแหน่งของวัตถุต่างๆ บนพื้นผิวโลก ซึ่งระบบหาตำแหน่งโดยใช้ดาวเทียมนี้จะเรียกว่าระบบ GPS (Global Positioning Satellite System) ซึ่งดาวเทียมบอกตำแหน่งนี้แรกเริ่มเดิมทีนั้นจะนำมาใช้ในการทหารปัจจุบันได้มีการนำมาใช้ในเชิงพาณิชย์เพื่อใช้สำหรับนำร่องให้กับเครื่องบินและเรือเดินสมุทร วิถีโคจรของดาวเทียมชนิดนี้จะโคจรแบบสัมพันธ์กับดวงอาทิตย์ (SunSynchronous) ดาวเทียมชนิดนี้ได้แก่ กลุ่มดาวเทียมบอกตำแหน่ง Navstar


 5 ดาวเทียมสมุทรศาสตร์ ใช้เพื่อสำรวจทางทะเลทำให้นักวิทยาศาสตร์ทางทะเลและนักชีววิทยาทางทะเลสามารถวิเคราะห์และตรวจจับความเคลื่อนไหวต่างๆ ในท้องทะเลได้ ไม่ว่าจะเป็นความแปรปรวนของคลื่นลม กระแสน้ำ แหล่งปะการัง สภาพแวดล้อม และลักษณะของสิ่งมีชีวิตทางทะเล เป็นต้น ดาวเทียมสมุทรศาสตร์ดวงแรกของโลกได้แก่ ดาวเทียม Seasat และได้มีการพัฒนาสร้างดาวเทียมทางสมุทรศาสตร์อีกหลายดวง เช่น ดาวเทียม Robinson 34,ดาวเทียม Mos 1 เป็นต้น


 6 ดาวเทียมสำรวจอวกาศ ใช้เพื่อสำรวจอวกาศเพื่อตรวจจับสภาพแวดล้อมต่างๆ ในอวกาศไม่ว่าจะเป็นคลื่นแม่เหล็กไฟฟ้า สิ่งมีชีวิต และสภาวะต่าง ๆเป็นต้น ดาวเทียมสำรวจอวกาศจะถูกนำขึ้นไปสู่วงโคจรที่สูงกว่าดาวเทียมประเภทอื่นๆ ทำให้ไม่มีชั้นบรรยากาศโลกกั้นขวาง ดาวเทียมชนิดนี้ได้แก่ ดาวเทียม Mars Probe และดาวเทียม Moon Probe


 7 ดาวเทียมจารกรรม ใช้เพื่อการสอดแนมและค้นหา เป็นดาวเทียมที่นิยมใช้ในกิจการทางทหาร ทั้งนี้เพราะสามารถสืบหาตำแหน่งและรายละเอียดเฉพาะที่ต้องการได้ทั้งในที่มืดและที่สว่าง ตรวจหาคลื่นวิทยุ สอดแนมทางการทหารของประเทศคู่แข่ง ตลอดจนสามารถสร้างดาวเทียมได้ตามความต้องการในด้านกิจการทหาร ดาวเทียมชนิดนี้ได้แก่ ดาวเทียม DS3, ดาวเทียม COSMOS ของสหภาพรัสเซีย ดาวเทียม Big Bird, ดาวเทียม COSMOS 389 Elint ของสหรัฐอเมริกา


ส่วนประกอบของดาวเทียม
          ดาวเทียมเป็นเครื่องมือทางอิเล็กทรอนิกส์ที่ซับซ้อน มีส่วนประกอบหลายๆ อย่างสามารถทำงานได้โดยอัตโนมัติ และทำงานได้อย่างมีประสิทธิภาพมากที่สุด
แต่ละส่วนมีระบบควบคุมการทำงานแยกย่อยกันไป มีองค์- ประกอบส่วนใหญ่ของดาวเทียมดังนี้
          1 โครงสร้างของดาวเทียม เป็นส่วนที่มีความสำคัญมากส่วนหนึ่ง เพราะเป็นส่วนประกอบภายนอกของดาวเทียม ที่จะต้องมีน้ำหนักเบาและทนทาน ทั้งนี้
น้ำหนักของส่วนโครงสร้างนี้จะต้องมีประมาณ 20-25% ของน้ำหนักรวม
          2 ระบบเครื่องยนต์ เป็นส่วนที่ทำงานคล้ายกับเครื่องอัดและปล่อยอากาศ ซึ่งระบบส่วนนี้จะทำงานในสภาวะสูญญากาศโดยไม่มีแรงโน้มถ่วง
          3 ระบบพลังงาน เป็นส่วนที่ผลิตพลังงานให้กับดาวเทียม ส่วนนี้จะมีแผงพลังงานแสงอาทิตย์สำหรับรับพลังงาน เพื่อเปลี่ยนให้เป็นพลังงานไฟฟ้าให้กับ
ดาวเทียม
          4 ระบบควบคุมและบังคับ เป็นส่วนที่ประมวลผลคำสั่งต่างๆ ให้กับดาวเทียมสำหรับติดต่อสื่อสารกับโลก ซึ่งภายในส่วนนี้จะประกอบด้วยคอมพิวเตอร์
          5 ระบบสื่อสารและนำทาง เป็นส่วนที่นำทางให้ดาวเทียมเคลื่อนที่ในวงโคจรที่กำหนด ซึ่งในส่วนนี้จะมีอุปกรณ์ตรวจจับความร้อนซึ่งทำงานโดยแผง
ควบคุมอัตโนมัติ
          6 อุปกรณ์ควบคุมระดับความสูง เป็นส่วนที่ทำหน้าที่รักษาระดับความสูงให้สัมพันธ์กับพื้นโลกและดวงอาทิตย์ ทั้งนี้ก็เพื่อให้ดาวเทียมสามารถรักษาระดับ
ให้โคจรได้
          7 เครื่องมือบอกตำแหน่ง เป็นส่วนที่กำหนดการเคลื่อนที่ของดาวเทียม




ระบบของการสื่อสารดาวเทียม
          ดาวเทียมสื่อสาร เป็นดาวเทียมที่ใช้ในการติดต่อสื่อสารทั้งในประเทศและระหว่างประเทศ ตลอดจนการคมนาคมขนส่ง ช่วยในการควบคุมเส้นทางและบอกตำแหน่งที่อยู่ โดยดาวเทียมจะทำหน้าที่เป็นสถานีรับส่งคลื่นวิทยุสื่อสารติดต่อกับสถานีภาคพื้นดินช่วยให้กิจการสื่อสารทางโทรศัพท์ โทรพิมพ์ โทรสาร และการถ่ายทอดสัญญาณโทรทัศน์ระหว่างประเทศเป็นไปอย่างทั่วถึงและรวดเร็ว สำหรับประเทศไทยใช้บริการของดาวเทียมอินเทลแสตและดาวเทียมปาลาปา ของประเทศอินโดนีเซีย
          ดาวเทียมเพื่อการสื่อสารนั้นจะทำหน้าที่เป็นสถานีทวนสัญญาณซึ่งในดาวเทียมจะติดตั้งอุปกรณ์รับส่งคลื่นวิทยุเพื่อใช้รับและถ่ายทอดสัญญาณสู่พื้นโลกโดยพลังงานไฟฟ้าที่ใช้ในตัวดาวเทียมนั้นได้มาจากเซลล์แสงอาทิตย์ ซึ่งระบบการสื่อสารด้วยดาวเทียมนั้นจะมีองค์ประกอบสำคัญ 2 ส่วนคือส่วนภาคอวกาศ (Space Segment) ซึ่งได้แก่ ตัวดาวเทียม และส่วนภาคพื้นดิน (Ground Segment) ซึ่งได้แก่ สถานีรับส่งภาคพื้นดินศูนย์โทรคมนาคม





สถานีภาคพื้นดินแต่ละแห่งนั้นสามารถเป็นได้ทั้งสถานีรับและสถานีส่ง จึงทำให้สถานีภาคพื้นดินแต่ละแห่งมีทั้งเครื่องรับและเครื่องส่ง ส่วนดาวเทียมนั้นจะเป็นเพียงสถานีทวนสัญญาณและส่งสัญญาณไปยังจุดหมายปลายทางที่สถานีภาคพื้นดินอื่นๆ และสัญญาณจากสถานีรับส่งภาคพื้นดินจะส่งไปยังศูนย์โทรคมนาคมแล้วศูนย์โทรคมนาคมจะส่งสัญญาณไปยังสถานีโทรทัศน์ สถานีวิทยุปลายทาง
การสื่อสารผ่านดาวเทียมสามารถกระทำได้โดยสถานีภาคพื้นดินส่งคลื่นความถี่ไมโครเวฟผสมสัญญาณข่าวสารขึ้นไปยังดาวเทียม ซึ่งจะเรียกว่าความถี่เชื่อมโยงขาขึ้น (Up-Link Frequency) โดยปกติความถี่ไมโครเวฟขาขึ้นจะใช้ประมาณ 6 กิกะเฮิร์ต เครื่องรับภายในตัวดาวเทียมจะรับสัญญาณเข้ามาแล้วทวนสัญญาณให้แรงขึ้นพร้อมกำจัดสัญญาณรบกวนออกไป ก่อนส่งสัญญาณกลับมายังพื้นดิน ทั้งนี้ดาวเทียมจะทำการเปลี่ยนความถี่คลื่นไมโครเวฟให้แตกต่างไปจากความถี่ขาขึ้นแล้วจึงส่งความถี่ไมโครเวฟที่ผสมสัญญาณข่าวสารกลับลงมาเรียกว่า ความถี่เชื่อมโยง ขาลง (Down-Link Frequency) โดยปกติความถี่ไมโครเวฟขาลงจะใช้ประมาณ 4 กิกะเฮิร์ต




แหล่งที่มา
โดย...นายหัสนัย  ริยาพันธ์  นักวิชาการโสตทัศนศึกษาชำนาญการ
http://www.stou.ac.th/study/sumrit/2-57(500)/page2-2-57(500).html
https://th.wikipedia.org/wiki/%E0%B8%94%E0%B8%B2%E0%B8%A7%E0%B9%80%E0%B8%97%E0%B8%B5%E0%B8%A2%E0%B8%A1%E0%B8%AA%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%AA%E0%B8%B2%E0%B8%A3